

Fluid Contamination Solutions CATALOG **5.3**

Table of Contents

Fluid 4 Our Story 6 Understanding ISO Codes Contamination 8 **ISO Code Limits** onaldson. Reference 10 Bearing & Component Life Extension 12 Fluid Life Extension **Materials** 14 Fluid Analysis Reference Guide 16 Hy-Pro Contamination Calculator App Viscosity Conversion & Reference Guide 18 22 Filter Assembly Sizing Filter 26 DFE Dynamic Filter Efficiency 32 Cellulose to Glass Upgrades **Elements** 34 Lube Design Filter Elements 35 Dvnafuzz Stainless Steel Fiber Media & Media 36 NSD Non-Spark Discharge Filter Elements Water Removal Filter Elements 37 **Turbo-TOC Filter Element Upgrades** 38 Fluid Off-line Filter Systems 40 **Off-line Filtration** Conditioning 42 **COF Compact Offline Filter CFU Compact Filter Unit** Equipment 46 50 **FPL Filter Panel** FC Filter Carts 54 58 FSL High Viscosity Filter Systems 62 FSLD Duplex High Viscosity Filter Skids 66 FSW Wall Mounted High Viscosity Filter System 70 FCL High Viscosity Filter Carts 74 **HS Heater Skids Diesel Filter Housings & Systems** Diesel Contamination - Types, Removal and Prevention 78 80 **COD Diesel Conditioning Filter Systems** 84 FSLCOD Diesel Conditioning Filter Systems 88 FCLCOD Diesel Conditioning Filter Carts 92 **CSD** Diesel Coalesce Filter Housing Varnish & Acid Scavenging Systems 96 Varnish Contamination - Types, Removal and Prevention SVR Soluble Varnish Removal Filter Systems 100

- **106** FSTO Turbine Oil Varnish Removal Systems
- **110** FSA Phosphate Ester Varnish Removal Systems
- **114** FSJL Jet Lube Varnish Removal Systems
- **118** ECR Electrostatic Contamination Removal Systems
- 122 ICB Ionic Charged Bonding Filter Elements

- 126 Water Contamination Types, Removal and Prevention
- 128 VUD Vac-U-Dry Vacuum Dehydration Systems
- 136 V1 Compact VUD Vacuum Dehydration Systems
- 140 COTTurbine Oil Conditioning Systems
- **146** FCLCOTTurbine Oil Conditioning Filter Carts
- **150** TMR-N2 Headspace Dehydrator + Nitrogen Generators
- **152** TMR-Air Headspace Dehydrators

Fluid Handling + Storage

- 154 LCS Liquid Conditioning Station
- 160 Custom Equipment

Table of Contents

	aka a	400		Part Number	
Filter		162	In Tank Assemblies	Quick Reference	
Assemblies		164	TF4 In-Tank Filter Assemblies	BF Breathers	
		168	TFR3 In-Tank Filter Assemblies	BT Breathers	275
		174	TFR2 In-Tank Return Line Filter Assemblies	CEU	49
		180	TFRB In-Tank Return Line Filter Assemblies		- 83
		186	IFR1 In-Tank Return Line Filter Assemblies		
			Low Pressure Assemblies		- 145
and a	Annual Manual	192	LF(M) High Viscosity/High Flow Filter Housings		- 143
		202	S75-S76 Spin-On Assemblies		
					2/1
					267
			Martine Deserve Assessbilles		263
	W 11	206	Nealum Pressure Assemblies F8 High Viscosity Filter Housings	ECR	121
		210	MF3 Medium Pressure Filter Assemblies	F8	209
	-	214	MF Medium Pressure Filter Assemblies	FC	57
				FCL	73
				FCLCOD	91
			High Pressure Assemblies	FCLCOT	149
		220	PF2 High Pressure In-Line Filter Assemblies	FPL	53
	•	224	PF4 High Pressure Based Mounted Filter Assemblies	FSA	113
		230	PFH High Pressure In-Line Filter Assemblies PEH62 High Pressure Full Flow Bi Directional Filter Assemblies	FSJL	117
		242	PFH92 High Pressure In-Line Filter Assemblies	FSL	61
		248	PFH840 High Pressure Full Flow Bi	FSLCOD	87
		254	Directional Filter Assemblies	FSLD	65
-		204	The fight ressure run now of Directional riter Assemblies	FSTO	109
	100		Duplex Filter Assemblies	FSW	69
		258	DLF(M) High Viscosity/High Flow Duplex Filter Housings	HS	77
		264 268	DFN Low Pressure Duplex Filter Assemblies	Hy-Dry	281
		200		LCS	159
				LF(M)	197
Reservoir		272	BTT.R.A.P.™Technology Breathers	LFW	201
Accessories		276	Hy-Dry Desiccant Breathers	MF	219
, 10000001100		282	BF High Flow Breathers	MF3	213
		204	opin-on bleatiers	PF2	223
				PF4	229
Test Kits &		286	PTK1 Oil Analysis Patch Test Kit	PFH	235
Equipment	1. A. A.	288 290	VIK On-Site Varnish lest Kits PM-1 On-Line ISO Code Particle Monitor	PFH62	241
		292	PFM75 Portable Fluid Monitor	PFH92	247
	H A COL	302	OA-TO Turbine Oil Analysis	PFH840	253
	29 T	304	OA-PE Phosphate Ester Analysis	PFHB	257
Annendix			Ouestionnaires & Data Sheets	S75-S76	205
		306	VUD Questionnaire	Spin-On Breathers	285
		307	Filter Assembly Application & Sizing Data Sheet	SVR	105
		308	Non-Standard Filter Element Data Sheet	TF4	167
			Warranty & RGA	TFR3	173
		310	Terms and Conditions	TFR2	179
		311 314	warranty statement Returned Goods Policy	TFRB	185
				TFR1	191
		216	Documentation	TMR-Air	153
		315	FLA (Full Load Amp) for Powered Equipment	TMR-N2	151
		317	Indicator Wiring Diagrams	V1	139
		318	Housing Mounting Specifications	VUD	135
		319	ISU Certification & Quality Statement		

Our Story

Welcome to the next chapter!

We are now Donaldson Hy-Pro. As you may know, Hy-Pro joined The Donaldson Company in 2017. Since then, we have been busy combining our expertise, manufacturing techniques, technologies, and innovative products. We have been preparing to leverage the global footprint with a customer-centric approach to deliver an expanded portfolio of contamination solutions. Now, with the formal name change and migration to Oracle, the transition is complete, and we're poised for even greater things.

Oracle allows us to leverage Donaldson's extensive global manufacturing, distribution, sales, and service network globally. While the migration is fresh and we are still working out the bugs, we're confident this will allow us to serve our customers better in the future. Thank you for your continued commitment to growing together!

Behind the scenes, our mission and commitment to you remain the same. We are advancing hydraulic, lubrication, and fuel filtration for a cleaner world. We strive to make our customers as efficient as possible and help achieve their sustainability objectives. We do this by improving the reliability of hydraulic and lube oil assets with industry-leading filter elements and contamination solutions equipment. We stop equipment failures and downtime, drive more efficient production, and eliminate the waste and environmental impact caused by contamination-related premature fluid disposal. Our goal is to eliminate industrial fluid contamination and all difficulties related to it.

Our state-of-the-art manufacturing facilities are home to vertically integrated and flexible build processes that allow us to leverage regionally local, streamlined manufacturing, and create world class standard and tailored solutions for our customer's challenges. We thrive on continually improving and identifying new ways to enhance customer experience. We develop cutting-edge media and best-in-class products supported by technical experts, oil sampling, online conditioning monitoring, sample results analysis and interpretation, customer service that works hard for you, and the world's most comprehensive critical filter element interchange; Donaldson Hy-Pro is the most complete and effective industrial fluid contamination solutions provider.

Our value-added distributor and partners work shoulder to shoulder with our Donaldson Hy-Pro Field Tech Reps to optimize plant efficiency, troubleshoot, teach, and drive bottom-line profitability. We deliver fast, reliable service on a local level to build mutually beneficial relationships and make our customers better. Those relationships, along with our nonstop desire for progress, allow us to improve the lives of our customers worldwide.

> Aaron Hoeg General Manager

Donaldson.

IY-PR

What we're about

Advanced Media Technology	Innovative media development and DFE rated filter elements are the core of Donaldson Hy-Pro's products, delivering lower operating ISO Codes for reliable plant operation. Optimized vacuum dehydration, coalesce and nitrogen membrane water removal technologies eliminate critical system water related failures. Ion Charge Bonding (ICB) treatment of specified lube and hydraulic oils addresses fluid contamination on a molecular level to prevent servo valve failures and extend fluid life. Dedicated smart off- line filtration systems condition extremely high viscosity oils that were previously considered not filterable. And that's just scratching the surface of what Donaldson Hy-Pro can do.
The Highest Quality	Engineered, manufactured and tested in our state of the art facilities across the US, our contamination solutions are built to be rugged, dependable, and easy to use. From the highest quality materials and components, we deliver the best filtration equipment anywhere in the world. The same quality goes into Donaldson Hy-Pro filter elements, eliminating any contamination challenge imaginable to provide our customers with the incredible results and peace of mind they deserve.
Unmatched Expertise	Work with Donaldson Hy-Pro and you're working shoulder-to-shoulder with the industry experts to implement contamination control and prevention in all things industrial fluid. But it doesn't stop there. From customized strategies and long term solutions to on-site service, support and training, our expert Field Technical Reps are involved from before implementation begins to long after the life of the filter element to ensure our customers are provided the best solutions for their specific contamination problems.
Flexible Design & Manufacturing	Whether you're selecting the perfect options from our standard product lines or need a completely custom, one of a kind solution, we listen to your needs and collaborate with you to deliver a specific contamination solution to fit your exact application.
Rapid Response	The flexibility in our manufacturing processes along with our extensive inventory of ready-to-ship filter elements allow us to respond to any situation with incredible speed. For standard delivery, you'll receive your elements in days, not weeks. And in some cases like the event of any emergency or upset situation, we're even able to deliver your exact filter element in hours to maximize your uptime and keep your plant running efficiently.
Eliminate Waste & Protect the Environment	Through contamination control and molecular treatment, Donaldson Hy-Pro extends the useful life of critical hydraulic and lube oils to improve reliability and bottom line profitability. Preventing premature fluid replacement reduces environmental impact, which is a responsibility that falls on everyone. With our products and efforts in fluid management, we continue to bring conservation of natural resources and reduction of industrial waste to the forefront.

Understanding ISO Codes

The ISO Cleanliness Code (per ISO4406-1999) is used to quantify particulate contamination levels per milliliter of fluid at 3 sizes - $4\mu_{ICI'}$, $6\mu_{ICI'}$, and $14\mu_{ICI'}$. It is expressed in 3 numbers (example 19/17/14) where each number represents a contaminant level code for the correlating particle size. The code includes all particles of the specified size and larger.

It is important to note that each time a code increases, the quantity range of particles is doubling. Inversely, as a code decreases by one the contaminant level is cut in half. ISO Code Example: $\begin{array}{c|c} 13/10/6\\ & & \\ 4\mu_{[C]} & 6\mu_{[C]} & 14\mu_{[C]}\\ Channel & Channel & Channel \end{array}$

ISO Code Particles per Milliliter (PPM) Sample Values Before Filtration

	Lower Limit	Upper Limit		Particle Size	PPM	ISO 4406 Code Range	ISO Code
24	80,000	160,000		► 4µ _[C]	151773	80,000-160,000	24
23	40,000	80,000		4.6µ _[C]	87210		
22	20,000	40,000		► 6µ _[C]	38363	20,000-40,000	22
21	10,000	20,000		10µ _[C]	8229		
20	5,000	10,000	_	- 14μ _[C]	3339	2,500-5,000	19
19	2,500	5,000		21µ _[C]	1048		
18	1,300	2,500		38µ _[C]	112		
17	640	1,300		68µ _[C]	2		
16	320	640					
15	160	320		Sample Value	s After Filtra	ition	
14	80	160		Particle Size	PPM	ISO 4406 Code Range	ISO Code
13	40	80	>	► 4µ _[C]	69	40-80	13
12	20	40		4.6µ _[C]	35		
11	10	20		► 6µ _[C]	7	5-10	10
10	5	10		10µ _[C]	5		
9	2.5	5		▶ 14µ _[C]	0.4	0.32-0.64	6
8	1.3	2.5		21µ _[C]	0.1		
7	0.64	1.3		38µ _[C]	0.0		
6	0.32	0.64		68µ	0.0		

Fluid Cleanliness Code Comparisons

NAS 1638	SAE 749	Defence Standa	ard 05/42	
		Table A	Table B	
		100,000		
		21,000		
12				
		15,000		
11				
		6,300		
10				
		4,400	6,300F	
9	6			
			4400F	
		2,000		
8	5			
		1,300	2,000F	
7				
			1,300F	
		800		
6	3			
			800F	
		400		
5	2			
			400F	
4	1			
3	0			
2				
	NAS 1638	NAS 1638 SAE 749 12	NAS 1638 SAE 749 Defence Stands Table A 100,000 21,000 21,000 12 15,000 11 6,300 10 4,400 9 6 2,000 8 5 1,300 7 800 6 3 400 5 2 400 5 2 4 1 3 0 2 1	NAS 1638 SAE 749 Defence Standard 05/42 Table A Table B 100,000 21,000 12 15,000 11 6,300 10 6,300 10 6,300 10 4,400 9 6 2,000 4400F 2,000 2,000F 7 1,300 6 3 800 3 6 3 800F 800F 400 400F 2 400F 2 2

ISO Code Limits

Hydraulic component and bearing manufacturers set ISO fluid cleanliness code limits that are the maximum tolerance for fluid contamination under which predictable performance and life can be maintained. These limits often become fluid cleanliness targets at the mill or plant level. Using the upper limit as a target means that you are operating on the absolute edge with no room for error. But there is a better way.

Our mission is to make our customers as efficient as possible. To do this we recommend and help implement operating ISO Codes that are well below OEM upper limits. Our focus is not to hit a valve manufacturer's ISO Code limit but to help our customer reduce servo valve replacements from 220 in one year to 6 in the next by implementing lower operating ISO Codes and drastically reducing component wear/failure. And since that customer could prove that their oil was cleaner than required by spec, those 6 servos in year 2 were replaced under warranty by the manufacturer. Lower operating ISO Codes can extend component life by triple, quadruple and beyond, resulting in huge reliability, profitability and efficiency gains.

How clean is my fluid?

Identifying proper sampling ports and locations, taking accurate samples and correctly interpreting results are critical to success. That's why our training and support are based on knowing and understanding the importance of fluid cleanliness and sampling. Donaldson Hy-Pro is on the front line with on-line particle counters, expertise and strategies to achieve lower operating ISO Codes.

Setting operating ISO Codes.

The table on the following page represents Donaldson Hy-Pro's recommendations for operating ISO Code by component and pressure. These are lower than typical industry standard target ISO Codes and are based on our experience of extending component life and reliability. Other considerations in setting a lower operating ISO Codes include:

- Component criticality (turbine hydraulic controls)
- Safety (amusement park hydraulics)
- Excessive shock or vibration (mining excavator)
- High frequency duty cycle (high speed stamping press)

Total System Cleanliness

Upgrading to DFE rated filter elements, Hy-Dry breathers and adding off-line contamination solutions where needed are a small expense compared to the cost of contamination related component repair and replacement, premature fluid replacement, increased maintenance demands and, worst of all, downtime. By taking these small steps and becoming proactive in preventing contamination, you're setting yourself and your plant up with the best possible chance for success.

Recommended^{*} Upper Limit ISO Cleanliness Codes per Component by Pressure Rating

	Pressure <2000 psi (138 bar)		Pressure 2000-3000 psi (138-207 bar)		Pressure >3000 psi (207 bar)	
	Industry Standard	Donaldson Hy-Pro Recommended	Industry Standard	Donaldson Hy-Pro Recommended	Industry Standard	Donaldson Hy-Pro Recommended
Pumps						
Fixed gear	20/18/15	≤ 17/15/12	19/17/15	≤ 16/14/11	-	-
Fixed piston	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10
Fixed vane	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Variable piston	18/16/13	≤ 16/14/11	17/15/13	≤ 15/13/10	16/14/12	≤ 15/13/10
Variable vane	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	-	-
Valves						
Cartridge	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10
Check valve	20/18/15	≤ 17/15/12	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11
Directional (solenoid)	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Flow control	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	18/16/13	≤ 16/14/11
Pressure control (modulating)	19/17/14	≤ 17/15/12	18/16/13	≤ 16/14/11	17/15/12	≤ 15/13/10
Proportional cartridge valve	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional directional	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional flow control	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Proportional pressure control	17/15/12	≤ 15/13/10	17/15/12	≤ 15/13/10	16/14/11	≤ 14/12/9
Servo valve	16/14/11	≤ 14/12/9	16/14/11	≤ 14/12/9	15/13/10	≤ 13/11/8
Bearings						
Ball bearing	15/13/10	≤ 15/13/10	-	-	-	-
Gearbox (industrial)	17/16/13	≤ 15/13/10	-	-	-	-
Journal bearing (high speed)	17/15/12	≤ 15/13/10	-	-	-	-
Journal bearing (low speed)	17/15/12	≤ 15/13/10	-	-	-	-
Roller bearing	16/14/11	≤ 15/13/10	-	-	-	-
Actuators						
Cylinders	17/15/12	≤ 16/14/11	16/14/11	≤ 15/13/10	15/13/10	≤ 15/13/10
Vane motors	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Axial piston motors	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10	17/15/12	≤ 15/13/10
Gear motors	20/18/14	≤ 17/15/12	19/17/13	≤ 16/14/11	18/16/13	≤ 15/13/10
Radial piston motors	20/18/15	≤ 17/15/12	19/17/14	≤ 16/14/11	18/16/13	≤ 15/13/10
Other						
Test stands	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10	15/13/10	≤ 15/13/10
Hydrostatic transmissions	17/15/13	≤ 16/14/11	16/14/11	≤ 15/13/10	16/14/11	≤ 15/13/10
High pressure fuel injector or common fuel rail	18/16/13	≤ 16/14/11	18/16/13	≤ 15/13/10	18/16/13	≤ 15/13/10

*Depending upon system volume and severity of operating conditions a combination of filters with varying degrees of filtration efficiency might be required (I.e. pressure, return, and off-line filters) to achieve and maintain the desired fluid cleanliness.

Bearing & Component Life Extension

Improving fluid cleanliness means reduced downtime, more reliable equipment, longer fluid life, and fewer maintenance hours. In addition, it also means reduced component replacement and repair expenses.

By improving the cleanliness of your fluid by only a few ISO Codes, you can directly increase the lifespan of your components and equipment. The tables on the following page demonstrate the life extension for both roller contact bearings and hydraulic components given a reduction in ISO Codes.

How clean is your new oil?

As it turns out, new oil can be one of the worst sources of particulate and water contamination.

The picture above was taken from a patch test at 10x magnification on a new oil sample direct from the manufacturer and shows the level of contamination present in seemingly clean oil.

A good upper limit for new oil cleanliness is 16/14/11. However, a commonly seen ISO Code for new oil reaches an ISO Code of 25/22/19, which is not only not suitable for hydraulic or lubrication systems but can actually be a major cause of degradation and premature component failure.

Donaldson Hy-Pro will help you develop a plan to achieve and maintain target fluid cleanliness. Arm yourself with the support, training, tools and practices to operate more efficiently, maximize uptime and save money.

Hydraulic Component Life Extension

Current	New	New	New	New	
ISO Code					
	2 x Life	3 x Life	4 x Life	5 x Life	
28/26/23	25/23/21	25/22/19	23/21/18	22/20/17	
27/25/22	25/23/19	23/21/18	22/20/17	21/19/16	
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15	
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14	
24/22/19	21/19/16	20/18/15	19/17/14	18/16/13	
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12	
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11	
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10	
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9	
19/17/14	16/14/11	15/13/10	14/12/9	13/11/8	
18/16/13	15/13/10	14/12/9	13/11/8	-	-
17/15/12	14/12/9	13/11/8	-	-	
16/14/11	13/11/8	-	-	-	
15/13/10	13/11/8	-	-	-	
14/12/9	13/11/8	-	-	-	

Roller Contact Bearing Life Extension

Current	New	New	New	New	
ISO Code					
	2 x Life	3 x Life	4 x Life	5 x Life	
28/26/23	25/23/19	22/20/17	20/18/15	19/17/14	
27/25/22	23/21/18	21/19/16	19/17/14	18/16/13	
26/24/21	22/20/17	20/18/15	18/16/13	17/15/12	
25/23/20	21/19/16	19/17/14	17/15/12	16/14/11	
24/22/19	20/18/15	18/16/13	16/14/11	15/13/10	
23/21/18	19/17/14	17/15/12	15/13/10	14/12/9	
22/20/17	18/16/13	16/14/11	14/12/9	13/11/8	
21/19/16	17/15/12	15/13/10	13/11/8	-	
20/18/15	16/14/11	14/12/9	-	-	
19/17/14	15/13/10	13/11/8	-	-	
18/16/13	14/12/9	-	-	-	
17/15/12	13/11/8	-	-	-	
16/14/11	13/11/8	_	_	_	
15/13/10	13/11/8	-	-	-	
14/12/9	13/11/8	_	_	_	

Fluid Life Extension

Our mission is to make our customers as efficient as possible, and we achieve that with the highest quality filtration products and total system cleanliness strategies to maximize uptime, productivity and prevent costly fluid contamination related failures. Been there. Done that. Going to do it again tomorrow. But that's not the only way we make our customers efficient. Extending the useful life of in-service fluids pays big dividends in reliability, saves money on premature fluid replacement costs, and reduces the environmental impact of industry by reducing the amount of fluids used and discarded. Enhancing reliability, saving money, and protecting the environment are not only good business, they're our responsibility. To help reduce oil usage, let's first understand why fluids are condemned and prematurely replaced.

Changing on time.

Routine oil changes based on operating hours for in service oil are common for large diesel engines, gearboxes, and mobile equipment hydraulics to name a few. For instance, one of our customers operating in the drilling industry opted for a dedicated off-line contamination solution that addressed particulate and water contamination plus a routine oil analysis instead of their normal 45 day oil change, extending their useful oil life to over a year. By implementing filtration and pro-actively monitoring their fluid, they were able to save millions of dollars per year on oil costs alone.

In a large diesel engine application, lube oil was changed every 500 hours based on OEM requirements to change once the Total Base Number had dropped to 50% of new. By installing the right off-line Hy-Pro solution, TBN was maintained in the acceptable range well beyond 2000 hours of engine operation. In this case, incorporating proper filtration enabled the customer to quadruple engine oil life, saving big money on oil. And since the units were remotely located, their savings were compounded with the reduction in maintenance and man hours.

An operator of large haul trucks now uses Hy-Pro filter carts with a particle monitor in lieu of dumping hydraulic drive oil during routine service. The systems are operating cleaner than ever and the oil is only changed after oil analysis indicates a viscosity loss or additive depletion.

Cleaning oil saves you from changing it.

Coal pulverizer gearbox oil is often filtered with a wire mesh strainer, and the oil is usually changed once it's so dirty you can't see through it. The trouble is the gearbox is on a crash course with a premature rebuild even if the oil is changed annually. The FSW (pictured below), combined with a Hy-Dry breather, maintains gearbox fluid cleanliness, avoiding a rebuild. Properly located sample ports on the FSW allow for accurate oil sampling and analysis. In hydraulic and lube systems dirt makes more dirt, but if we keep fluids clean, they can be changed based on oil condition. Commit to control gearbox contamination with Hy-Pro and greatly extend the life of in service gearbox oil.

Protect fluid additives and bottom line profitability.

When today's group II turbine oils are condemned, it means they have high varnish potential or the sacrificial antioxidant (AO) additive levels have dropped below 20% of new. SVR and FSTO turbine oil conditioning systems will remove and prevent varnish, but that's not all they do. Both systems also remove oxidation by-products on the molecular level as they are created, greatly reducing the consumption of AO additives. And by maintaining high levels of your AO additives, Hy-Pro can double or even triple your turbine oil useful life.

Fluid Life Extension

Demulsibility is life or death for oil.

And when it's gone, so is the oil. But what is demulsibility? It's the ability of the oil and water to naturally separate, and it is usually a function of the purity of the oil's base stock. Steel mill lube oils are exposed to high levels of particulate and water contamination. Wire mesh strainers are usually used for filtration, allowing ISO Codes to rise above acceptable limits. For water control, mills rely on the oil's natural demulsibility characteristic to shed water which they decant from the reservoir daily. Eventually, the stress of excessive particulate contamination and continuous operation at or above water saturation point

causes the oil to lose its demulsibility. Antiquated centrifuges don't cut it. You need a total Morgoil solution, precisely what Hy-Pro's VUD delivers. The VUD offers high efficiency particulate removal and removal of free, emulsified and dissolved water that stays ahead of ingression. That means healthy oil, no decanting, less oil down the drain, and longer Morgoil useful life.

Group II turbine lube oil demulsibility can be compromised by oxidation by-products and acids. These polar forms of contamination occur during oxidation and form bonds

with water which prevent the natural separation of oil and water. SVR and FSTO remove acids and oxidation by-products and have been proven to restore the demulsibility of turbine oil. Before you dump your turbine oil, let us test it. We might just be able to raise the dead to save your oil and your budget.

No need for EHC bleed and feed.

Steam turbines and high temp hydraulic applications run on phosphate ester fire resistant fluids which are difficult to maintain. Phosphate ester has little to no additives, but it attracts water. When exposed to water, hydrolysis creates aggressive acids. Fullers earth and Selexsorb filters are used to remove acids but they also add dissolved metal ions to the oil, causing servo valve deposits, slow response time and unit trips. Before that, the contamination causes resistivity to drop and the ISO Codes to rise even further. Then the fluid supplier will recommend a partial bleed and feed or a total flush followed by complete fluid replacement. Sounds like a complicated situation with an expensive solution that won't solve the problem. Don't buy more fluid or flush!

FSAPE is Hy-Pro's total solution for phosphate ester fluid maintenance that not only prevents deposits but excels at removing water and acid, lowering ISO Codes, removing dissolved metals and, yes, can even restore resistivity to keep all of your key fluid metrics in the green.

Don't settle for maintenance mediocrity and premature fluid replacement. Treat your fluids like an important system component and see the financial and environmental impact you can have.

Fluid Analysis Reference Guide

Industrial Oil Viscosities - ISO 3448

ISO 3448 established common viscosity classifications for industrial lubricants that are widely accepted and used across the globe. Each of your oils fall under a specific category of ISO VG classification which you can obtain from the manufacturer and are often listed on test reports you will receive from fluid sample analyses.

The table below outlines the viscosity measurements per ISO 3448 along with common minimum and optimum viscosities for various systems you'll likely find operating in your facility.

On the following page are contaminants found on fluid analysis test reports listed according to their chemical symbol (often how they'll be listed on the reports) and the various sources from which they are known to occur.

Viscosity Range	ISO 3448 Viscosity Class	Kinematic Viscosity Mid-point cSt @ 40°C	Kinematic Viscosity Minimum cSt @ 40°C	Kinematic Viscosity Maximum cSt @ 40°C
	ISO VG 32	32	28.8	35.2
	ISO VG 46	46	41.4	50.6
	ISO VG 68	68	61.2	74.8
	ISO VG 100	100	90	110
	ISO VG 150	150	135	165
	ISO VG 220	220	198	242
	ISO VG 320	320	288	352
	ISO VG 460	460	414	506
	ISO VG 680	680	612	748

Vinimum	Application	Viscosity cSt @ 40°C
Viscosities	Gearbox Reducers	33
	Gear Pumps	30
	Spherical Roller Bearings	21
	Other Roller Bearings	13
	Hydraulic Systems	13
	Plain Bearings	13
	To Support Dynamic Load	4

Optimum
Viscosities (at
Operating Temp)

Application	Viscosity cSt @ 40°C
Hydraulic Systems	25
Plain Bearings	30
Spur & Helical Gears	40
Hypoid Gears	60
Worm Gears	75

Fluid Analysis Reference Guide

Oil Analysis Test Categories Wear XX XX XX Additives Contaminants Metals Name Bearings Alumina Al Blocks Bauxite Blowers Catalyst Bushings Coal Clutches Fly Ash Foundry Dust Cylinders Housings Granite **Grease** Thickener Pistons **Pump Bearings** Paint Motor Housings Road Dust Rotors **Thrust Bearings** Thrust Washers Alloy Steel **Ceramic Products** Sb Paint Antimony Fuel Additive Ba **Grease** Thickener **Oil Additive: Detergent** Barium Alloy Steel Be Bery**ll**ium Oil Additive: Ext **Coolant Inhibitor** В Pressure Oil Additive: Anti Wear **Oil Additive: Detergent** Boron Journal Bearings Cd Plating Cadmium Cement Dust Hard Rock Dust Ca Fuller's Earth **Oil Additive: Detergent Grease** Thickener Oil Additive: Rust Calcium Inhibitor Gypsum Road Dust Hard Water Rubber Lignite Salt Water Slag Exhaust Valves **Roller Bearings** Cr Sleeve Liners Stainless Steel Low Alloy Steel **Taper Bearings Oil Coolers** Rings Water Treatment Rods Paint **Babbitt Bearings** Oil Pumps Cu (Underlay) **Bearing Cage** Pump Piston & Thrust Plate Steering Disc Brass Bronze Valve Train Bushings **Cam Bushings** Wear Plates Clutches Wrist Pin Bushings Governors Guides Oil Additive: Anti Wear **Oil Coolers** Paint Bearings Hydraulic Pump Fe Blocks Vanes **Brake Pads** Gears Cam Shaft Pistons Cast Iron Liners Oil Pump Crankshafts Cylinders PowerTake Off (PTO) Discs Rings Gears Screws

Housings

Shafts

Predictor Source of Spectrometry Metals

Wear Metals Con

Contaminants & Abrasives

Pb	Babbitt Journal Bearing (Overlay) Bronze Alloy Solder Balancing Weights	Gasoline Additives Paint Road Dust
Mg	Turbine Metallurgy	Hard Water Oil Additive: Detergent Road Dust Sea Water Fuller's Earth
	Alloy Steel	Oil Additive: Ext Pressure Grease
Nickel	Hardened Steels Stainless Steel Plating	
P		Oil Additive: Anti Wear Oil Additive: Ext Pressure
K	Coolant Inhibitor Fly Ash Fuel Element	Granite Paper Dust Road Dust
Silicon	Alloy Steel Asbestos Cement Dust Fly Ash Road Dust Glass	Granite Grease Limestone Oil Additive: Antifoam Synthetic Lubricant Sealant
Ag	Bearing (Overlay) Needle Bearings	Oil Cooler (Solder) Wrist Pin Bushings
Na	Activated Alumina Coolant Inhibitor Dirt Fly Ash	Grease Oil Additives Paper Mill Dust Road Salt
Sn ^{Tin}	Bearing Cage Babbitt Bearing Flashing	Piston Overlay Solder
Ti	GasTurbine Bearings Turbine Blades	Paint
V	Turbine Blades Valves	Bunker Oil
Zn	Brass Plating	Cathodic Protection Galvanizing Grease Oil Additive: Anti Wear
	hyprofiltration.com/	Donaldson

HY-PRO

15

Filtration Contamination Tool

New Updated App

Available on the App Store and on Google Play[™]

Calculate the amount of contamination that passes through your hydraulic components and bearings annually with the Donaldson Hy-Pro Contamination Tool.

Just enter current and target ISO Fluid Cleanliness Codes, flow rate and daily operating hours to understand the impact of dirty vs. clean oil. Raise awareness, improve reliability, and save money by minimizing component repair and replacement costs while extending useful fluid life. Put Donaldson Hy-Pro on your lube team and let us help you set a target and implement strategies to achieve and maintain your fluid cleanliness goals.

Apple, the Apple logo, iPad, and iPhone are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc.

ISO Codes, decoded.

While ISO Cleanliness Codes provide a way to gauge the level of system cleanliness, they can be difficult to interpret. The Donaldson Hy-Pro Contamination Tool is an app designed to decode the mystery and provide you with a real-world figure you can actually understand.

Everywhere you are.

Download the Donaldson Hy-Pro App to quickly calculate the effect on your system of lowering ISO Codes. And with effortless conversion between US Standard and Metric, you'll be amazed at the results of hitting target ISO Codes no matter where you are.

Driven by results.

Do you know how much abrasive dirt you are pumping through sensitive bearings, valves and injectors in a year? The Donaldson Hy-Pro Contamination Tool will tell you just how much and deliver several calculations to understand the effects of lowering your ISO Codes, in clear cut and easily understood figures.

Make a difference.

The knowledge to make a difference by lowering ISO Codes is at your fingertips. Set the inputs for your system specs to see how much contamination is removed by hitting a target ISO Code.

Filter Assembly Sizing 18

Filter Assembly Sizing Guidelines

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 32 cSt (150 SUS) viscosity and 0.86 fluid specific gravity. Use the following steps to calculate clean element assembly pressure drop.

Calculate △P coefficier	nt Using Saybolt Uni	versal Seconds (SUS)		
for actual viscosity		Actual Operating Viscosity ¹ (SUS)	N/	Actual Specific Gravity
	ΔΡ Coefficient	=150	· X -	0.86
	Using Centistokes	(cSt) Actual Operating Viscosity ¹ (cSt)		Actual Specific Gravity
	ΔP Coefficient	32	· X -	0.86
Calculate actual clean filter assembly ΔP at both operating and cold start viscosity	Actual Assembly Clean ∆P	= Flow Rate X ΔP Coefficient (from calculation above)	x	Assembly ∆P Factor (from sizing table)

Sizina	٠	To avoid or minimize bypass during cold start the actual assembly clean ΔP calculation should be	calculation should be		
recommendations to		repeated for start-up conditions if cold starts are frequent.			

- Actual assembly clean ΔP should not exceed 10% of bypass ΔP gauge/indicator set point at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean ΔP or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2 sizes.

flexibility

optimize performance

and permit future

Assembly Sizing Example

Sizing Example:

Replacing existing paper machine lube oil duplex with DLFM4 (4x4) duplex with HP107 series elements. The details of the system are listed below along with a breakdown of the steps to calculate the Actual Assembly Clean ΔP .

Oil: PM220 (ISO VG 220)		Operating Temp:	125°F		
Specific Gravity:	0.86	Flow Rate:	150 gpm		
Assembly:	DLFM4 (4x4)	Element:	HP107L36-6MB		
Assembly ΔP Factor ² : 0.0084 psid/gpm		Actual Viscosity ¹ :	120 cSt @ 125°F		

Calculate ΔP	Using Centistokes (cSt)								
coefficient for	AB Coofficient		Actual Oper	rating \	/iscosity¹ (cSt)	v	Actual Specific Gravity		
actual viscosity	AF Coefficient	=		32		~	0.86		
	AP Coofficient	_		120		v	0.86		
		=		32		^	0.86		
	ΔP Coefficient	=	3.75						
Calculate actual clean filter assembly ΔP at both operating and cold start viscosity	Actual Assembly Clean ∆P	=	Flow Rate	x	∆P Coefficient	х	Assembly ∆P Factor (from sizing table)¹		
	Actual Assembly Clean ∆P	=	150 gpm	x	3.75	х	0.0084 psid/gpm		
	Actual Assembly Clean ∆P	=	4.7 psid						

¹Actual viscosity conversion information available on page 22.

²Assembly clean element ΔP factor can be found on the respective individual assembly data sheets.

hyprofiltration.com/

19

Assembly Sizing Example

Sizing Example:

Installing an MF3 housing with 16" length code, 50 psid integral bypass and 12M media. The details of the system are listed below along with a breakdown of the steps to calculate the Actual Assembly Clean ΔP .

Oil:	AW32 (ISO VG 3		Operating Temp:			110°F / 50°F cold start		
Specific Gravity: 0.86			i	Flow Rate:			22 gpm	
Assembly:	MF3 L16			Element:			HP60L16-12MB	
Assembly ΔP Factor ² :	sembly ΔP Factor ² : 0.134 psid/gpm			Actual Viscosity ¹ :			25 cSt @ 110°F 140 cSt @ 50°F Cold Start	
	Lloing Contistako	- (-S+)						
Calculate ΔP	Using Centistokes	A stual On s		\/:				
actual viscosity	ΔP Coefficient	=	Actual Oper			Х		
				32	<u>-</u>		0.86	
	@ Operating Tem	perature		25			0.86	
	∆P Coefficient		32		Х	0.86		
	∆P Coefficient	=	0.78					
	Cold Start							
	AP Coefficient	_	140			x	0.86	
		_		32		Χ	0.86	
	ΔP Coefficient	=	4.375					
Calculate actual	@ Operating Tem	perature						
clean filter assembly ∆P at	Actual Assembly Clean ΔP	=	Flow Rate	х	∆P Coefficient	х	Assembly ∆P Factor (from sizing table) ¹	
both operating and cold start viscosity	Actual Assembly Clean ∆P	=	22 gpm	х	0.78	х	0.134 psid/gpm	
	Actual Assembly Clean ∆P	=	2.29 psid					
	Cold Start							
	Actual Assembly Clean ∆P	=	22 gpm	х	4.375	х	0.134	
	Actual Assembly Clean ΔP	=	12.9 psid	12.9 psid				

 1 Actual viscosity conversion information available on page 22. 2 Assembly clean element ΔP factor can be found on the respective individual assembly data sheets.

Assembly Sizing Example

Sizing Example:

Fitting an FSL2 off-line filtration system to a gearbox using ISO VG 460 gear lubricant. The details of the system are listed below along with a breakdown of the steps to calculate the Actual Assembly Clean ΔP .

Oil:	Gear lube 460 (ISO VG 460)			Operating Temp:			48°C / 16°C cold start	
Specific Gravity:	0.90			Flow Rate:			 19 lpm	
Assembly:	FSL5 (use LF18" 3M assembly)			Element:			HP107L18-3MB	
Assembly ΔP Factor ² :	0.0007 bard/lpm			Actual Viscosity ¹ :			280 cSt @ 48°C 2500 cSt @ 16°C Cold Start	
Calculate AP	Using Centistoke	s (cSt)						
coefficient for	comg contotono	0 (001)	Actual Oper	rating	Viscositv ¹ (cSt)		Actual Specific Gravity	
actual viscosity	∆P Coefficient	=		32			0.86	
	@ Operating Tem	perature)	28	n		0.90	
	∆P Coefficient	=		32			0.86	
	ΔP Coefficient	=	8.75					
	Cold Start			2500			0.90	
	ΔP Coefficient	=		32	2	Х	0.86	
	ΔP Coefficient	=	81.79					
Calculate actual	@ Operating Tem)						
clean filter assembly ∆P at	Actual Assembly = Clean ΔP =		Flow Rate	х	∆P Coefficient	х	Assembly ΔP Factor (from sizing table)¹	
both operating and cold start viscosity	Actual Assembly Clean ∆P	=	19 lpm	х	8.75	х	0.0007 bard/lpm	
	Actual Assembly Clean ∆P	=	0.116 bard					
	Cold Start							
	Actual Assembly Clean ∆P	=	19 lpm	х	81.79	х	0.0007 bard/lpm	
	Actual Assembly Clean ∆P	=	1.08 bard					

¹Actual viscosity conversion information available on page 22.

²Assembly clean element ΔP factor can be found on the respective individual assembly data sheets.

Viscosity Reference Chart

Viscosity Scale Chart

The chart below provides a quick reference for converting between the four major measures of viscosity. To determine equivalents, draw a horizontal line straight across the page at your known viscosity. All other columns that intersect the line represent equivalents.

Viscosity Reference Table

ISO/Temperature Reference

The table below gives viscosity values in cSt for known ISO VG fluids at specified temperatures using the Kinematic midpoint of each classification according to ISO 3448. Values given below are an approximation subject to variation ±10% from the midpoint value used in the calculations and are intended to be used as a reference. For exact value ranges, contact your fluid manufacturer.

To determine viscosity, locate your fluid ISOVG across the top, locate your target/specified temperature in the two left hand columns, and the cell in which the respective column and row intersect is the approximate viscosity value.

Temp	Temp	ISO	ISO	ISO	ISO	ISO	ISO	ISO	ISO	ISO	ISO	ISO	ISO
°F	°C	22	32	46	68	100	150	220	320	460	680	1000	1500
14	-10	315	610	1,130	2,285	4,493	9,277	18,565	36,300	69,775	141,088	283,473	593,291
23	-5	218	405	724	1,401	2,646	5,225	10,013	18,790	34,687	67,151	129,188	258,112
32	0	155	278	481	893	1,625	3,081	5,672	10,249	18,228	33,901	62,665	119,962
41	5	113	196	330	590	1,037	1,893	3,359	5,861	10,072	18,052	32,160	59,188
50	10	85	142	233	402	685	1,207	2,071	3,498	5,825	10,088	17,371	30,828
59	15	65	106	168	282	467	797	1,324	2,171	3,510	5,890	9,828	16,865
68	20	51	80	125	203	327	542	875	1,396	2,196	3,579	5,800	9,648
77	25	40	62	95	150	235	379	596	927	1,422	2,255	3,557	5,748
86	30	32	49	73	113	173	272	417	633	950	1,468	2,259	3,554
95	35	27	39	58	87	130	200	300	445	652	986	1,481	2,274
104	40	22	32	46	68	100	150	220	320	460	680	1,000	1,500
113	45	19	26	37	54	78	115	165	235	332	481	694	1,018
122	50	16	22	31	44	62	89	126	177	245	348	493	709
131	55	13	19	26	36	50	71	98	135	185	258	358	506
140	60	12	16	22	30	41	57	78	105	142	194	266	369
149	65	10	14	18	25	34	46	62	83	110	149	201	275
158	70	9	12	16	21	28	38	51	67	87	117	155	208
167	75	8	10	14	18	24	32	42	54	70	92	121	161
176	80	7	9	12	16	20	27	35	45	57	74	96	126
185	85	6	8	11	14	18	23	29	37	47	60	77	100
194	90	6	7	9	12	15	120	25	31	39	50	63	81
203	95	5	7	8	11	13	17	21	27	33	42	52	66
212	100	5	6	7	9	12	15	18	23	28	35	43	54
221	105	4	5	7	8	10	13	16	20	24	30	37	45
230	110	4	5	6	8	9	12	14	17	21	25	31	38
239	115	4	5	6	7	8	10	12	15	18	22	27	32
248	120	3	4	5	6	8	9	11	13	16	19	23	28
257	125	3	4	5	6	7	8	10	12	14	17	20	24
266	130	3	4	4	5	6	8	9	11	12	15	18	21
275	135	3	3	4	5	6	7	8	10	11	13	15	18
284	140	3	3	4	4	5	6	7	9	10	12	14	16
293	145	2	3	3	4	5	6	7	8	9	11	12	14
302	150	2	3	3	4	4	5	6	7	8	10	11	13

Viscosity Reference Charts

24

VISCOSITY (CS)

VISCOSITY (SUS)

Viscosity Reference Charts

25

VISCOSITY (SUS)

DFE Dynamic Filter Efficiency

What is DFE?

DFE matches filter testing with real-life conditions

All hydraulic and lube systems have a critical contamination tolerance level that is often defined by, but not limited to, the most sensitive system component such as servo valves or high speed journal bearings. Defining the ISO fluid cleanliness code upper limit is a function of component sensitivity, safety, system criticality and ultimately getting the most out of hydraulic and lube assets.

Filters remove the particulate contamination that enters a system or is generated by the system as it operates. All filters are subjected to some form of system dynamics: hydraulic filters encounter frequent and rapid changes in flow rate when valves shift, cylinders unload and pump output changes; lube filters experience dynamic conditions during start up and shut down. Filters validated only to current ISO testing standards don't perform as expected when subjected to the demands of real world dynamic operating systems.

A filter is not a black hole. Two key characteristics of filter performance are capture efficiency and retention efficiency. Capture efficiency can be thought of simply as how effectively a filter captures particles while retention efficiency is a measure of how effectively that filter retains the particles it has captured. A filter is not a black hole, and its performance must not be based solely on how efficiently it captures particles. If not properly designed and applied, a filter can become one of the most damaging sources of contamination in a system if it releases previously captured particles when challenged with dynamic conditions.

The Dynamic Filter Efficiency Test (DFE) is the evolution of standard hydraulic and lube filter performance testing. DFE goes further than current industry standards to quantify capture and retention efficiency in real time by inducing dynamic duty cycles, measuring real- time performance during dynamic changes and the filters ability to retain particles. DFE testing is the method for predicting worst case fluid cleanliness along with average fluid cleanliness. The DFE test method was pioneered in 1998 during a joint effort between Scientific Services Inc (SSI) and Donaldson Hy-Pro.

Dynamic Filter Efficiency

Current Filter Performance Testing Methods

To understand the need for DFE it is important to understand how filters are currently tested and validated. Manufacturers use the industry standard ISO16889 multi-pass test to rate filter efficiency and dirt holding capacity of filter elements under ideal lab conditions.

Figure 1 depicts the test circuit where hydraulic fluid is circulated at a constant flow rate in a closed loop system with on-line particle counters before and after the test filter. Contaminated fluid is added to the system at a constant rate. Small amounts of fluid are removed before and after the filter for particle counting to calculate the filter efficiency (capture). The capture efficiency is expressed as the Filtration Ratio (Beta) which is the relationship between the number of particles greater than and equal to a specified size $(X\mu_{tcl})$ counted before and after the filter. In real world terms this test is the equivalent of testing a filter in an off-line kidney loop rather than replicating an actual hydraulic or lube system. It's basically a filter cart test.

Figure 1: ISO16889 Multi-Pass Test

Filtration Ratio (Beta) per ISO16889:

 $\beta x_{_{[c]}} = \frac{\text{quantity particles} \ge X\mu_{_{[c]}} \text{ upstream of filter}}{\text{quantity particles} \ge X\mu_{_{[c]}} \text{ downstream of filter}}$

 Example:
 $\beta 7_{c} = 600/4 = 150$

 Filtration Ratio (Beta):
 $\beta 7_{c} = 150$

In the example, 600 particles greater than or equal to $7\mu_{c}$ were counted upstream of the filter and 4 were counted downstream. This Filtration Ratio is expressed as "Beta $7_{c} = 150$ ". The _c is referred to as "sub c". The sub c is used to differentiate between multi-pass tests run per the current ISO16889 multi-pass test with new particle counter calibration per ISO11171 from ISO4572. Filtration Ratio expressed or written without the "sub c" refers to the antiquated ISO4572 multi-pass test superseded by ISO16889. The efficiency may also be expressed as a percentage by converting the Filtration Ratio:

Efficiency of
$$\beta X_{[C]} = \frac{(\beta-1)}{\beta} \times 100$$

Example:Efficiency % of $\beta 7_{[c]} = 150 = (150-1)/150 \times 100$ Efficiency %:99.33%

Using our Beta Ratio found in the first example, we can calculate that the test filter is 99.33% efficient at capturing particles $7\mu_{lcl}$ and larger.

Dynamic Filter Efficiency

The DFE Multi-Pass Testing Method

DFE multi-pass enhances the industry standard by inducing dynamic conditions (duty cycle) and measuring the effects of the duty cycle in real time instead of looking at normalized numbers over a time weighted average. DFE also quantifies retention efficiency in real time in order to identify a filter's ability to properly retain previously captured contaminant and the degree to which it unloads captured contaminant back into the system. For an easy comparison, think of it as a sneeze that releases a rush of contamination to levels that are well above the upper limit of fluid cleanliness then fades as the flow rate normalizes.

In the DFE test, flow rate is truly dynamic in that rapid changes can be made while maintaining full system flow through the test filter. The raw data is continuously collected and organized so filter efficiency can be reported for variable flow conditions including time weighted averages and isolated moments to reveal true filter performance during hydraulic stress conditions – exactly when you need the filter to perform at its best.

At the end of the initial test when the filter element is loaded with contaminant, it is subjected to a restart test in which the flow goes from zero to max flow in milliseconds, replicating a hydraulic or lube system restart. Through rapid particle counting with precise control, this dynamic flow change allows Donaldson Hy-Pro to analyze the amount of particles released and understand both the capture and retention efficiencies of each and every filter tested.

Quantifying Contaminant Capture and Retention

Filters for critical hydraulic, lube and fuel systems are specifically designed for high efficiency particle capture. However, a filter is not a black hole, capturing and retaining particles in a real-world dynamic environment is far more challenging. Donaldson Hy-Pro pioneered the DFE (Dynamic Filter Efficiency) multipass test to optimize performance under real-world conditions. This methodology drives the development of proprietary media layers, media support structure, and filter construction. The results are higher efficiency particle capture and retention and cleaner fluids when Donaldson Hy-Pro upgrade elements are in service.

Donaldson Hv-Pro uses DFE and the ISO/CD23369 Cyclic Flow Multi-Pass Test to benchmark performance between its filters and those of its competitors. The Cyclic Flow Multi-Pass protocol ISO/CD23369 moves the industry standard one step closer to real-world conditions by incorporating cyclic flow with rapid flow transitions (between 100-200 msec) as shown in Figure 2.

Figure 2: ISO23369 Flow Cycle

30

Table 1 illustrates this differentiation during dynamic conditions. Donaldson Hy-Pro filters and a competitor's filters (Filter X) of similar rating were tested using ISO16889 and ISO23369. The average Beta ratios are listed and plotted vs particle size in Figure 3. Under static ISO16889 (dashed lines) both filters easily exceeded a Beta ratio of $B7_{ICI} > 4000$ (Donaldson Hy-Pro filter averaged β 6.2 μ m=2000, Filter X averaged a higher level of performance, β 3µm=4000). In beta ratios the lower the BX number the better the efficiency.

Table 1: Test Conditions and Results								
ISO/CD23369 Test Conditions								
Flow Rates 114 lpm:28.5 lpm (30 gpm:7.5 gpm)								
ISO16889 Test Results								
	Donaldson Hy-Pro	Filter X						
β≥ 1000	6.2 µm	6.0 µm						
ISO/CD23369 Test Results								
	Donaldson Hy-Pro	Filter X						
β≥ 1000	7.2 µm	10.6 µm						
β≥ 2000	8.1 µm	12.9 µm						
β≥ 4000	9.2 µm	17.7 µm						

But that is where the similarity ends. The Donaldson Hy-Pro DFE rated filter element shifted from 6.2µm during static testing to 8.1µm during dynamic conditions – a shift of only 1.9µm. Filter X shifted from 6.0µm to 12.9µm, from static to dynamic conditions a 6.9µm drop, 6 times greater efficiency loss at $Bx \ge$ 2000 than Donaldson Hy-Pro. And these differences dramatically increased at higher Beta ratios with Filter X falling to 17.7 μ m at $\beta \ge 4000$.

Donaldson Hv-Pro DFE rated filter elements are optimized to deliver and maintain the lowest real world, in-service ISO fluid cleanliness codes even in industry's toughest systems. This is what separates Donaldson Hy-Pro from the rest and how we improve your reliability, efficiency and keep your fluids cleaner and always in spec.

Figure 3: ISO16889 & ISO23369 Avg Beta vs Particle Size

Competitive Advantage

DFE Multi-Pass: Cold Start Contamination Retention

Donaldson Hy-Pro utilizes DFE to bridge the gap between lab and real world filter performance for hydraulic, lube and fuel systems. The DFE restart test challenges a filter's ability to retain the contaminants it has captured in a worst-case scenario, once the filter is near the end of its life. Once the filter is heavily loaded the DFE test main flow and particle injection systems are stopped for a short dwell time, then full flow is restarted without injection to measure what comes out of the filter. After restart the DFE cycle is repeated several times all while the downstream particle counts are monitored in real time. The developmental value of the DFE test is the continuous, real time particle counts that occur concurrently every 5 seconds measuring actual retention efficiency during flow changes and restart (Figure 4). This is the advantage of DFE over ISO/ CD23369 Cyclic Flow Multi-Pass test, where several high frequency flow changes are normalized over 30-60 second particle counts. ISO/CD23369 would miss the short-term particle events captured by the DFE test.

Figure 4: ISO/CD23369 vs DFE Multi-Pass

Restarts in hydraulic, lubrication and fuel systems are one of the toughest conditions for a filter and for this reason Donaldson Hy-Pro includes it in the DFE test. A filter that doesn't properly retain is a dangerous source of concentrated contamination in front of critical components and bearings. Figures 5 and 6 depict the particles released during restart for Filter X and Donaldson Hy-Pro. The DFE rated Donaldson Hy-Pro element has much higher retention efficiency than filters designed and validated only to ISO16889 multi-pass or ISO23369. In the real world this means that Donaldson Hy-Pro DFE rated elements provide lower ISO codes (consistently cleaner oil) and better protection of your critical equipment and uptime.

Figure 5: Filter X DFE Restart Test

Particles / mL

Released 1810 particles/ml ≥4µm_[c] **Filter X Element Restart Test** 2000 1800 1600 1400 1200 1000 4um 800 6um 600 14um 400 200 0:00:00 0:01:26 0:02:53 0:04:19 0:05:46 0:07:12 0:08:38 0:10:05 Test Time

Figure 6: Donaldson Hy-Pro DFE Restart Test

Released 283 particles/ml $\ge 4 \mu m_{rel}$

Downstream Particle Counts / mL During Restart Test $\geq 4\mu m_{cl}$ ISO Code per ISO: 4406:1999 ADHC ≥6µm, ≥14µm, Donaldson Hy-283 29 1.8 15/12/8 54.17g **Pro Element** Element X 1,810 117 1.2 18/14/7 53.27g

Upgrading from Cellulose to Glass 32

First, understand media efficiencies.

When a filter element is rated at a particular micron size, it is said to remove particles of that particular size and larger from the fluids it is filtering. However, filter elements of different media with the same micron rating can have substantially different filtration efficiency. Filter efficiency is calculated by taking the ratio of particles upstream of (before) the filter to particles downstream of (after) the filter. The higher the ratio, the more efficient the filter and the less particles it allows to pass. There are two distinct ratings of filter efficiency, classified as nominal and absolute.

Nominal Efficiency

Nominal ratings refer to a degree of filtration at a particular micron by weight of solid particles. Filters rated as nominal (we're looking at you cellulose) have no maximum pore size, meaning while they may remove some 10 micron particles, they can still allow larger particles such as 200 micron to pass through and devastate components in the system.

Absolute Efficiency

Absolute ratings, such as most glass media filter elements are classified under, derive their value from the largest size particle which can pass through the pores of the media. Along with much greater efficiencies, glass elements have superior fluid compatibility versus cellulose with hydraulic fluids, synthetics, solvents, and high water based fluids.

Cellulose vs Glass Elements

Organic cellulose fibers can be unpredictable in size and effective useful life, while inorganic glass fibers are much more uniform in diameter and much smaller than cellulose fibers as seen in the images to the right (Figures 2 and 3).

The illustrated elements on the following page provide a visual representation of the efficiencies of both a cellulose and glass element at their respective efficiency ratings.

The cellulose element would typically achieve a code no better than 22/20/17. Runaway contamination levels at $4\mu_{\mbox{\tiny [c]}}$ and $6\mu_{\mbox{\tiny [c]}}$ are very common when cellulose media is applied in which a high population of fine particles exponentially generate more particles in a chain reaction of internally generated contaminants. The illustrated glass element would typically deliver an ISO Fluid Cleanliness Code of 18/15/8 to 15/13/9 or better depending upon the system conditions and ingression rate.

Upgrading to Donaldson Hy-Pro G8 Dualglass

When upgrading to an absolute efficiency glass media element, the system cleanliness must be stabilized. During this clean-up period the glass element halts the runaway contamination as the ISO cleanliness codes are brought into the target cleanliness range. As the glass element removes years of accumulated fine particles, the element life might be temporarily short.

Once the system is clean the glass element can last up to 4~5 times longer than the cellulose element that was upgraded as shown in Figure 4.

Figure 1: Filter Efficiency Equation

quantity particles $\ge X\mu_{c}$ upstream of filter $\beta x_{[c]} = \frac{quarter, p_{[c]}}{quantity particles \ge X\mu_{[c]} \text{ downstream of filter}}$

Figure 2: Cellulose Filter Media

Cellulose fibers at 400x magnification

Figure 3: Glass Filter Media

Glass fibers at 400x magnification

Figure 4: Element Lifespan

Dirt Capacity (g)

Cellulose: $\beta 10\mu_{[C]} = 2$

Dirt in

Dirt in

50,000 particles $10\mu_{cl}$ or larger

50,000 particles $10\mu_{\rm [c]}$ or larger

 $= \frac{50,000 \text{ Particles In}}{25,000 \text{ Particles Out}}$

Dirt out

25,000 particles $10\mu_{\scriptscriptstyle [c]}$ or larger

50% efficiency

Glass: β10μ_[C]= 4000

= $\frac{50,000 \text{ Particles In}}{12.5 \text{ Particles Out}}$

Dirt out 12.5 particles 10µ_{rel} or larger

99.97% efficiency

Lube Design Low ΔP Optimized Glass Filter Media

A modified DFE rated glass media option for high flow lube systems with low ΔP alarm (1 bard, ~15 psid). Also ideal for undersized hydraulic filter assemblies or upgrading from wire mesh to high efficiency glass media.

Donaldson. HY-PRO

hyprofiltration.com/

Lube Applications

High speed bearing lube oil systems in paper mills typically use higher viscosity ISO220 and ISO320 oils. A high clean element ΔP (i.e. 0.5 bard / 7psid) relative to a low ΔP indicator alarm setting (i.e. 1.25 bard / 18 psid) leads to reduced filter element loading and short element life. This type of condition can occur when changing to heavier oil or upgrading filter element efficiency in search of lower operating ISO Codes. Donaldson Donaldson Hy-Pro H and L media codes are designed specifically to optimize element life while maintaining filter efficiencies in these types of applications.

The perfect media for your application.

Donaldson Hy-Pro DFE Rated *M media code is the Donaldson Hy-Pro standard and is ideal for 99.99% of all hydraulic, lube and diesel applications. Contact Donaldson Hy-Pro for selection and part numbers for H and L low ΔP modified media options.

Original **Donaldson Hy-Pro Glass Media** HC8314FCP39H HP8314L39-3MB

Donaldson Hy-Pro Lube Media HP8314L39-3LB

Dynafuzz **Stainless Fiber Media**

Filter Elements for Power Generation and other fire resistant fluid applications.

Dynafuzz is ideal for long term exposure to aggressive fluids such as phosphate ester, Skydrol, Deionized water, and high temperature applications where traditional glass media binders can degrade leading to media migration.

hyprofiltration.com/

Dynafuzz options:

Dynafuzz media is available for all Donaldson Hy-Pro high collapse filter elements that are found in turbine EHC, primary metal, and other hydraulic control applications where fire resistant fluids are used. For the most critical installations (nuclear power), optional 100% bubble point integrity testing and validation is available. Part number modifier example, contact Donaldson Hy-Pro for specifications and pricing:

Original

Donaldson Hy-Pro **Glass Media** HC9401FDP13ZYGE HP41L13-2MV

Donaldson Hy-Pro Dynafuzz Media HP41L13-3SFV

Intuitive Upgrade

The PFQ290218V Westinghouse EHC upgrade features a 3SF Dynafuzz media element ($\beta 5_{icl} > 4000$) in place of a 10 micron glass media element. The bowl extension with top loading element service minimizes mess and accepts a double length element allowing the use of higher efficiency media and extended element life.

Advanced media solutions.

EHC systems using phosphate ester fluids (FRFs) develop aggressive acids when exposed to water. The acid attacks glass fiber media binders of critical pump discharge and last chance servo pilot filters. Lower filter efficiency, media migration and fiber shedding into the servo screens can result causing servo valve malfunction. Dynafuzz media is DFE rated to provide the same low operating ISO Codes and contaminant retention you expect with the fluid compatibility you need.

NSD Non-Spark Discharge Filter Elements

Donaldson Donaldson Hy-Pro NSD element and media technology is optimized to prevent spark discharge and minimize potential energy in bearing lubrication and hydraulic control systems.

NSD elements prevent oil degradation caused by thermal events associated with element spark discharge to extend fluid life and prevent anti-oxidant additive depletion.

hyprofiltration.com/

Prevent varnish; promote efficiency.

With Donaldson Hy-Pro NSD elements, any reduction in thermal sparking events and tribo-electric effect will have a positive impact by decelerating anti-oxidant additive depletion and extending useful fluid life. Field test data has shown that Donaldson Hy-Pro NSD elements may even reduce or stabilize varnish potential values by preventing further degradation from sparking and collecting some insoluble oxidation by-products.

Cleaner fluid without sparking.

For some, the answer to preventing element sparking and high potential energy is to use coarse strainer type filters (Stat-Free) in the main bearing lube filter duplex. Although this may prevent sparking it renders the main bearing lube filter assembly useless in preventing catastrophic bearing failure due to contamination. Independent lab analysis proves that even Donaldson Hy-Pro high efficiency 3 micron absolute ($\beta 5_{[c]} > 4000$) NSD elements are resistant to spark discharge.

Eliminate damage caused by sparking.

As fluid passes through the typical tortuous filter media fiber matrix, turbulence increases which results in thermal events as the fluid layers shear, creating static accumulation on elements that can lead to high voltage spark discharge from media to support tube. Photos 1 and 2 show evidence of sparking on the filter element support tube (pitting and burning), and photo 3 shows filter media and support mesh from a lube filter element with spark discharge burn damage.
Vater Removal G8 Dualglass Media with Water Removal

Media code "A" specifies G8 Dualglass media copleated with water removal scrim to produce a filter that can remove water while maintaining $\beta x_{[C]} \ge 4000$ efficiency down to $3\mu_{[C]}$. Available for all Spin-On and cartridge style filter elements.

hyprofiltration.com/

Remove water: protect your system.

Emulsified water, very small droplets of water dispersed through oil, will often cause oil to appear cloudy or milky along with increasing its viscosity. Donaldson Donaldson Hy-Pro Water Removal filter elements pull free and emulsified water from your industrial oils to leave them clean and dry and ensure your system is operating to its peak efficiency.

Dual purpose contamination removal

Donaldson Donaldson Hy-Pro filter elements with water removal media combine the best of particulate and water removal and can bring high water counts down and prevent any of the gel particles from being released back into the system, all while maintaining our $\beta x_{lel} \ge 4000$ particulate removal efficiency you've already come to love. Water removal is available with any of our glass media selections from 1µ to 40µ.

Donaldson Hy-Pro Element	Water Capacity					
HP75L8-*AB	24 oz 0.7 liters					
HP107L36-*AB	177 oz 5.2 liters					
HP8314L39-*AB	182 oz 5.4 liters					
HP60L8-*AB	12 oz 0.4 liters					

Water Capacity by Series

Water PPM ~ Ounce Conversion Moisture (PPM) x Fluid Volume (Gal) x 0.0001279 = oz of Water Example:

2,500 ppm x 5,000 gal reservoir x 0.0001279 = 1598.75 oz water

Turbo-TOC* Upgrades

Donaldson Hy-Pro Filter Element Upgrades for Kaydon Turbo-TOC^{*} Conditioning Skid Element Sets

Complete filter element sets including pre-filter, coalesce, separator and post-filter polishing elements.

hyprofiltration.com/

*Turbo-TOC is a registered trademark of Kaydon Corporation.

Elements that go beyond industry standard. DFE rated elements perform true to rating even under

demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under all circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh.

Water Phase 1: Coalesce.

Stage 1 in removing the free and emulsified water is to coalesce the water into larger droplets until large enough to drop out of the oil. The Donaldson Hy-Pro HPQK2G coalesce utilizes all synthetic media and non-woven materials providing great compatibility even over long term exposure to water.

Water Phase 2: Separator + Final Polishing.

The HPQK3P-3M upgrade is a dual functioning element providing the final stage of water separation with a final pass of particulate removal. The TEFLON® coated screen works with the coalesce element to act as a water barrier while the water droplets grow before being collected. The final conditioning is Donaldson Hy-Pro 3M media rated $\beta_{3_{[c]}} > 4000$, it's a total solution.

Element Interchange & Upgrade

Kaydon Model No.	Kaydon Part No.	Donaldson Hy-Pro Direct Interchange	Description	Donaldson Hy-Pro Upgrade	Description
K1000	A910201	HP102L36-6MB	Glass media pre-filter $\beta 7_{[C]} > 4000$	HP101L36-3MB	High capacity glass media pre-filter $\beta 5_{_{[C]}} > 4000$
K1100 (replaced K1000)	A910201, A910266	HP101L36-6MB	High capacity glass media pre-filter β7 _[C] > 4000	HP101L36-3MB	High capacity glass media pre-filter β5 _[C] > 4000
K2000	A910202	HPQK2	Coalesce element cellulose media	HPQK2G	Coalesce element synthetic media
K2100 (replaced K2000)	A910202, A920267	HPQK2G	Coalesce element synthetic media	-	-
K3000	A910203, A910303	НРОКЗ	Separator element cellulose media	НРQК3Р-3М	Separator layer + β5 _[C] > 4000 glass media polishing
K3100 (replaced K3000)	A910203, A910268	НРQК3Р-3М	Separator layer + β5 _[C] > 4000 glass media polishing	-	-
K4000	A910204	HP102L36-3MB	High capacity glass media post-filter $\beta 5_{[C]} > 4000$	HP101L36-3MB	High capacity glass media post-filter β5 _[c] > 4000
K4100 (replaced K4000)	A910204, A910269	HP101L36-3MB	High capacity glass media post-filter β5 _[C] > 4000	HP101L36-1MB	High capacity glass media post-filter β3 _[C] > 4000

Optimize Your Turbo-TOC* performance with Donaldson Hy-Pro Elements

Achieve lowest turbine lube oil reservoir ISO fluid cleanliness results and maximize element life by upgrading to Donaldson Hy-Pro HP101L36-3MB series for pre-filter and HP101L36-1MB post-filter.

For optimum water removal efficiency and fluid compatibility use HPQK2G coalesce element and HPQK3P-3M separator/ polisher elements (all synthetic media, non-cellulosic).

To reduce element change out costs on skids with pre-filter and post-filter housings install HP101L36-3MB in pre-filter with HPQK2G coalesce and HPQK3P-3M separator / polisher elements in the coalesce vessel (extends coalesce element life).

Upgrade to HPQK2G and HPQK3P-3M synthetic media elements and achieve > 95% single pass water removal efficiency.

Tested to ISO Quality Standards

ISO 2941	Collapse and burst resistance
ISO 2942	Fabrication and Integrity test
ISO 2943	Material compatibility with fluids
ISO 3724	Flow fatigue characteristics
ISO 3968	Pressure drop vs. flow rate
ISO 16889	Multi-pass performance testing

Fluid Compatibility

Petroleum based fluids, water glycols, polyol esters, phosphate esters, HWBF. Contact Donaldson Hy-Pro for seal selection assistance.

Media

G8 media pleat pack features our latest generation of graded density glass media that delivers required cleanliness while optimizing dirt capacity.

Glass Media Filtration Efficiency (Beta Ratio) vs Micron Size

Donaldson.

39

*Turbo-TOC is a trademark of Kaydon Corporation.

hyprofiltration.com/

Off-line Filtration

Types, Uses & Contamination Prevention

Our mission is to make our customers as efficient as possible, and we achieve that with the highest quality filtration products and total system cleanliness strategies to maximize uptime, productivity and prevent costly fluid contamination related failures. We often achieve that by simply upgrading our customers to Donaldson Hy-Pro DFE rated filter elements and Hy-Dry breathers. But too many systems have insufficient filtration, or worse yet no filtration, creating the need for a range of off-line particulate filtration solutions.

An Off-line system (aka kidney loop) is connected to the reservoir of a hydraulic, lube or storage system that operates independently of the operation of that system meaning that it can be stopped for an element change without interrupting operations. It allows the flexibility to use ultra-high efficiency media to remove particulate and insolubles to reach low ISO Codes that might otherwise be unattainable. Conditioning off-line extends the life of critical on-board pump discharge, servo pilot and return line filters that can only be changed when the system is not running. Maintaining cleanliness in the reservoir protects critical pump inlet, eliminating the need for suction strainers that can cause pump cavitation.

Dedicated

A properly sized off-line filtration system can turn over the entire volume of a reservoir several times a day (we recommend 8 turns), maintaining ISO fluid cleanliness codes well below the upper limit. Whether you're using low viscosity hydraulic or high viscosity lube oil, implementing dedicated off-line filtration will yield longer bearing and hydraulic component life and longer useful fluid life. When dealing with high viscosity gearbox and rolling mill lubricants, it's most effective to filter off-line so that the flow rate and filter can be sized for optimal pressure drop and element life without sacrificing efficiency. That means you can pump thick fluid through an oversized filter at a low flow rate and get it super clean, even when it's cold outside. And when the filter element has removed kilograms of dirt you don't have to stop your operation to change it; just turn off the kidney loop, change elements, and get right back to filtering your fluids. With a dedicated system, you know that your fluids are always clean and your system is always protected.

Mobile

Portable filtration systems are a valuable tool in the battle against contamination and are ideal for fluid transfer and in field service work. The Donaldson Hy-Pro range of portable filtration systems includes compact units for small gearboxes, filter carts optimized for hydraulic applications and units with generously sized filters for high viscosity or highly contaminated fluids commonly found in fluid reclamation. Staged filtration, two filters in series, allows for combined water removal and particulate filtration in one pass to get you on to the next job more quickly. Donaldson Hy-Pro mobile filtration systems are designed for industrial, outdoor use with high quality components including cast iron gear pumps and nonshredding wheels that get your filtration exactly where you need it.

Integrated versatility

Implementing off-line filtration is the best way to ensure your hydraulic and lube oils are clean and your systems are operating efficiently. Whereas applications that consume fluids (diesel, etc) must filter fluids in a single pass, off-line filter systems for hydraulic and lube oils allow for recirculating the reservoir to remove more dirt with every pass. A dedicated off-line system has the added benefit of being used as a 3-way valve to top off the reservoir, turning your filter system into a fluid transfer solution that removes any dirt from oil that is added and prevents contamination from ever entering your system.

Off-line Systems More than just filtration.

With a Donaldson Hy-Pro dedicated filtration system, fluid contamination related failures and premature fluid replacement are a thing of the past. Every off-line solution includes sample ports before and after filters, providing accurate reservoir condition and filter performance validation. Some great options include onboard particle monitors, cooling for hot gearboxes, ultra high viscosity, dragline-optimized skids, automatic isolation valves, hazardous environment, custom enclosures and more. As with all Donaldson Hy-Pro systems, your off-line system can be completely customized to provide the best solution for your application.

COF Compact Offline Filter		2	Our smallest unit yet, it's able to fit where no other filtration equipment can. Ideal for smaller systems, or where a larger offline system wouldn't fit, can be permanently installed or portable.
CFU Compact Filter Unit	40	6	A compact, hand portable solution ideal for fluid transfer and conditioning small gearboxes and hydraulic reservoirs. Available in several filter configurations MF90 staged filtration or single large spin-on for high viscosity.
FPL Filter Panel	50	0	A dedicated wall or stand mount filter panel ideal for hydraulic reservoirs, dispensing fluids from storage, and diesel conditioning. Features two filters in series and a range of elements including high efficiency and water removal.
FC Filter Cart	54	4	Portable filter cart complete with hoses and wands, the FC is narrow and well balanced for taking filtration wherever you need it. Perfect for conditioning multiple hydraulic systems (injection molding) and fluid transfer (top-off).
FSL High Viscosity/ High Flow Filtration Systems	58	8	A dedicated off-line system with large filters suited for high viscosity gearbox fluids or heavily contaminated fuels. Top loading filter housings minimize mess during element service and the HP107 coreless element with integral zero-leak bypass provides a new bypass with each element change.
FSLD Dual High Viscosity/ High Flow Filtration Systems	62	2	The FSLD offers all the features of the FSL with two filters in series, parallel or duplex to deliver lower ISO Codes and cleaner fluids. With multiple valve options, FSLD systems can be run in parallel, series or in isolation functioning as a duplex arrangement.
FSW Wall Mounted Filtration Systems	66	6	The latest addition to the fleet of Donaldson Hy-Pro solutions, FSW, is our most flexible side loop contamination solution. Flow rate, element size and media selections scalable for any application from high flow fuel, plastic injection molding varnish control, phosphate ester acid remediation, wind turbine gearbox filtration, and much more.
FCL High Viscosity/High Flow Filter Carts	70	0	FCL features an oversized filter element so you can clean the dirtiest gear lubricants, reclaimed fluids and contaminated oils with high efficiency filter media. Top loading filter housings minimize mess during element service and the HP107 coreless element with integral zero-leak bypass provides a new bypass with each element change.
HS Heated Filtration Systems	74	4	Combining the high efficiency filtration of the FSL with a specialized heating design, the HS is perfect for cold weather operations or for getting systems up to temperature during cold starts. Programmable temperature control and low watt density jacketed heaters maintain temperature and protect the oil from direct contact with heating elements.

COF Compact Offline Filter

Our smallest unit yet, the Compact Offline Filter is able to fit where no other filtration equipment can. Ideal for smaller systems, or where a larger offline system wouldn't fit, can be permanently installed or portable.

Typical applications include gear boxes, plastic injection molding machines, and vacuum pumps, to name a few. Choose between a variety of motors, wands, hoses, and portable cart options. Paired with our unique VTM elements, this unit can remove particulate, water, and varnish all with one filter.

hyprofiltration.com/

onaldson

Small size, huge results.

The vertical design allows the installation of equipment with limited space compared to filter panels or other offline filtration equipment. At only 8.5" depth, 8" wide, and 27.75" tall, the COF can be installed on almost any piece of industrial or mobile equipment.

Wide range of media options.

Choose between a variety of media options from our G8 dualglass (M), G8 dualglass + water-absorbing (A), or VTM media. VTM710 media is the ideal filter media choice to pair with the COF to remove particulate, water, and varnish. Our G8 dualglass media is another excellent option. Rated at an industry-leading Beta 4000 value, G8 dualglass media was developed using our proprietary Dynamic Filter Efficiency (DFE) test standard. Rest assured, our filter medias deliver cleanliness in the real world, whichever option you choose.

High viscosity performance.

The custom-designed gerotor pump was specifically designed to allow for a higher viscosity range than competing units. The COF can pump up to a 2,200 cSt fluid, equivalent to an ISO 460 oil at room temperature. This increasing the range of applications that are suitable without adding bulky heater options.

Easy filter element servicing.

Only 1.5" of clearance is required for element servicing since the bowl and filter are removed as a single piece. The element snaps into the bowl and is automatically seated to the pump as the bowl is installed. A bowl drain comes standard as well as a hex nut for easy removal and installation. The required torque is listed on the bowl for easy reference during servicing.

Reverse flow element with intergrated bypass.

The HP482 filter elements used in the COF utilize a reverse flow element with a bypass valve integrated into the closed end cap. The raised bypass design keeps dirt in the bottom end cap during bypass and element servicing. Every time an element is changed, a new bypass is installed eliminating bypass valve fatigue and leakage over time.

Dedicated to reliability.

Don't let dirty oil get you down. Clean oil is essential to the long-term reliability of all equipment. At Donaldson Hy-Pro we are dedicated to the removal of all forms of oil contamination from dirt to water and even varnish and sludge removal. Extend the life of your oils as well as high pressure, return, and pilot filter elements with an easy to service, compact off-line filter.

COF Specifications

Dimensions ¹ Without frame With frame	Height 8.5″ (22 cm) 58″ (147 cm)	Lengt 27.75″ 24″ (6	h ′ (70 cm) ï1 cm)	Width 8" (20 cm) 21" (53 cm)		Weight 35 lbs (16 kg) 112 lbs (51 kg)		
Connections	Inlet ¾" female SAE	Outle E-ORB ½″ fe	t male SAE-ORB	Hoses ¾" x 8 ft (2.4 m) sucti ½" x 8 ft (2.4 m) disch	on female JIC or narge female JIC	n female JIC or BSPP swivel Irge female JIC or BSPP swivel		
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)			Ambient Temperature -4°F to 104°F (-20C to 40C)				
∆P Indicator Trigger	35 psi (2.4 bar)							
Filter Assembly Bypass	50 psid (3.4 ba	rd).						
Materials of Construction	Motor Steel cover	Pump Aluminum body	Filter Assembly Aluminum bowl	Hoses Reinforced synthetic	Wands Stainless steel	Element End Caps Nylon glass filled		
Power Options Contact factory for options not listed	1/2 HP, 1P, 115/208-230 V ac, 60Hz, with on/off switch, 6 foot cord, and NEMA 5-15 plug 1/2 HP, 1P, 60Hz and 50Hz 1/2 HP, 3P 208-230/460 V ac, 60Hz 1/2 HP, 3P 190/380 V ac, 50Hz 1/2 HP, 24 V dc, 20 A, Electric Motor							
Pump	Custom desigr	ned positive displac	ement gerotor pump	with internal relief valve	9.			
Media Description	M G8 Dualglass, of DFE rated, h glass media fo lubrication flui	our latest generatic igh performance r all hydraulic & ds. βx _[ε] ≥ 4000	A on G8 Dualglass high media combined v removal scrim. βx	h performance with water $t_{c_1} \ge 4000$	VTM $\beta 0.9_{[C]} \ge 4000 \text{ p}$ insoluble oxida and water remo	articulate, ition by-product oval media		
Replacement Elements	To determin Model COF15	e replacement e Filter Element Pa HP482RNL11 – [M	lements, use corre rt Number ledia Selection Code	esponding codes froi] [Seal Code]	m your equipr Examp HP482	nent part number: I e RNL11-3MB		
Viscosity	1-2200 cSt Maximum visc COF maximum	osity based on ded recommended vis	icated COF installatio	ons with positive inlet flo d wands.	oded suction. Co	ontact factory for portable		
Fluid Compatibility	Petroleum and use fluorocarb	mineral based fluid on seal option or co	ds (standard). For pol ontact factory.	lyol ester, phosphate est	er, and other spe	cified synthetic fluids		

¹Dimensions are approximations taken from base model and will vary according to options chosen.

COF Part Number Builder

COF												
Model	Pow	er Options	Hose Connection	Indicator	S 0	pecial ptions	Media		Seal			
Model	Filte 15	r Rate 1.5 gpm	n (5.7 lpm)					Filte HP48	er Elements 32RNL11-***			
Power Options Contact factory for options not listed	11 12 21 22 23 24 40 46	1/2 HP, 1/2 HP, 1/2 HP, 1/2 HP, 1/2 HP, 1/2 HP, 1/2 HP, 1/2 HP, 1/2 HP,	Single Phas 1P, 115/208-2 Single Phas 3 Phase 208 24 V dc, 20 A 3 Phase 380 3P 208-230/4	e, 115 V Ac, 230 V ac, 601 e, 208-230 V e, 208-230 V -230 V Ac, 6 A, Electric M -400 V Ac, 5 460 V ac, 60	50 Hz, Hz and 7 Ac, 50 7 Ac, 60 0 Hz, E lotor 0 Hz, E Hz	Electric N I 50Hz, wi 0 Hz, Elec 0 Hz, Elec Electric M Electric M	Aotor With th on/off s tric Motor ctric Moto otor otor	n ON/O switch, f With C r With C	FF Switch, 6 F 6 foot cord, ar DN/OFF Switch DN/OFF Switcl	oot Cord, Ar nd NEMA 5- ⁻ n, 6 Foot Cor n, 6 Foot Coi	nd No Plug 15 plug d, And No rd, And No	9 Plug 9 Plug
Hose Connection	G S X	1/2 HP, 8 foot ł 8 foot ł No hos	3P 190/380 \ noses, fema noses, fema es	/ ac, 50Hz le BSP swiv le JIC swive	el hos I hose	e ends ends						
ΔP Indicator	India D S V X Y	Cator O Visual / Visual / Visual No indi Visual	ptions / Electrical (I / Electrical (I cator (port	DIN 43650) DIN 43650) plugged)				Ther No Yes No - Yes	rmal Lockou	t Surge No Yes No - Yes	Control	Reset Auto Manual Auto – Manual
Special Options	C F U W	CE mar Portabl CUL an Stainle	ked for mac e cart frame d/or CSA ma ss Steel war	chinery safe arked starter nds	ty dire enclos	ctive 200 sure for Ca	6/42/EC Inada					
Media Selection	G8 D 1M 3M 6M 10M 16M 25M	$\begin{array}{l} \beta 3_{ C } \geq 4\\ \beta 4_{ C } \geq 4\\ \beta 6_{ C } \geq 4\\ \beta 11_{ C } \geq \\ \beta 11_{ C } \geq \\ \beta 16_{ C } \geq \\ \beta 22_{ C } \geq \end{array}$	85 4000 4000 4000 4000 4000 4000		G8 [3A 6A 10A 16A 25A	$\begin{array}{l} \textbf{Dualglas}\\ \beta 4_{[c]} \geq 4\\ \beta 6_{[c]} \geq 4\\ \beta 11_{[c]} \geq 2\\ \beta 16_{[c]} \geq 4\\ \beta 16_{[c]} \geq 2\\ \beta 22_{[c]} \geq 2 \end{array}$	s + wate 000 000 4000 4000 4000	r remo	oval	VTM VTM710	β0.9 _[C] ≥ insoluble by-produ removal	4000 particulate, e oxidation uct and water media
Seals	B V E-WS	Nitrile Fluoroo EPR se	(Buna) carbon als + stainle	ss steel sup	port m	nesh						

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

CFU Compact Filter Unit

Bigger isn't always better. The Compact Filter Unit provides you with the best filtration at a size you can take anywhere. Tried and true, the CFU is the ultimate filtration system in power and mobility. And with easy to change cartridge style MF90s, you can rest easy knowing your filtration will always exceed your expectations.

hyprofiltration.com/

Small size, huge results.

Designed specifically for limited space operations, the CFU maximizes power in a minimal package. Use the ergonomic handle to hoist the CFU to provide filtration directly within turbine nacelles or filter straight from the barrel to take out contaminants before they can ever reach your equipment.

47

The first stage of success.

Staged filtration allows a range of media selections for particulate and water removal to deliver ISO Codes right on target. Choose from six element configurations to get the perfect CFU for your toughest contamination problems.

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $3_{[c]} \ge 4000$ you can be sure contamination stays exactly where you want it: out of your fluid.

Redefines standard filtration.

Knowledge of your system is the ultimate tool in the fight against contamination. With upstream and downstream sample ports located on every machine, the standard CFUs are anything but standard.

Different by design.

Built from lightweight aluminum and engineered for portability, the CFU is perfectly designed to filter new fluids during transfer and top-off bulk oil before use. For fluids already in service, use the CFU to flush them through the high efficiency elements for unparalleled levels of fluid cleanliness.

Completely customizable.

Every CFU can be specifically tailored to the job at hand so you get the perfect solution to suit your needs. With a variety of flow rates and power options, even the ability to color coordinate each CFU to your existing safety standards, the possibilities are endless for what you can do with the CFU.

CFU Specifications

Dimensions ¹	Height 21″ (54 cm)	Length 21″ (54 cm)	Width 12″ (31	cm)	Weight 47 lbs (21 kg)
Connections	Inlet ¾" male JIC with 37° flan	Outlet re ½" male JIC with	Hoses 37° flare ¾" x 8 ½" x 8	ft (2.4 m) suction femal ft (2.4 m) discharge fem	e JIC or BSPP swivel nale JIC or BSPP swivel
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambier -4°F to (-20C to	n t Temperature 104°F 5 40C)	
∆P Indicator Trigger	22 psi (1.5 bar). Consult f	actory for other option	S.		
Filter Assembly Bypass	25 psid (1.7 bard). Consu	It factory for other option	ons.		
Materials of Construction	Frame Powder coated aluminum	Filter Assembly Aluminum head	Hoses Reinforced syntheti	Wands c Stainless steel	Element Bypass Valve Nylon
Electric Motor	TEFC, 56C frame 7/16 hp, 1450-1750 RPM				
Electric Connection	15' (4.6 m) cord included	installed on machine. ²			
Pump	Positive displacement ge pump inlet 15 psi (1 bar)	ear pump with relief val . Consult factory for hig	ve. Maximum pressu her pressures.	ire on	
Pneumatic Option Air Consumption	~15 cfm @ 60 psi ³				
Media Description	M G8 Dualglass, our latest of DFE rated, high perfor media for all hydraulic & fluids. $\beta x_{[C]} \ge 4000 (\beta x \ge 1)$	A generation G8 Dua mance glass media lubrication scrim. 200)	Iglass high performation combined with water $\beta x_{[C]} \ge 4000 \ (\beta x \ge 200)$	W ance Stainless r removal media βx _ι))	steel wire mesh _{c]} ≥ 2 (βx ≥ 2)
Replacement Elements	To determine replaceModelFilter ElCFUDHP75L8CFUM9HP90L9CFUM2HP110L1	ement elements, use ement Part Number – [Media Selection Cod – [Media Selection Cod 1 – [Media Selection Cod	e corresponding c le] [Seal Code] le] [Seal Code] ode] [Seal Code]	codes from your equ Example HP75L8–12MB HP90NL9–16MB HP110NL11–6AV	uipment part number:
Viscosity	Max viscosity rated for 2	00 cSt. ⁴			
Fluid Compatibility	Petroleum and mineral b for compatibility with flu fluid (S9) compatibility s	pased fluids (standard). orocarbon seal option. elect fluid compatibility	For specified synthet For phosphate ester from special option	tics contact factory (P9) or skydrol s.	
Hazardous Environment Options	Select pneumatic power Call for IEC, Atex or othe	ed unit (Power Option C r requirements. If Explo	00) or explosion proo osion Proof option (X	f NEC Article 501, Class) selected, no electric	s 1, Division 1, Group C+D. al cord will be included.

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²Selecting pneumatic power option removes electric cord.

Air consumption values are estimated maximums and will vary with regulator setting. When sized and installed appropriately. Contact factory for applications above 200 cSt for sizing requirements.

(£x) C E 💮 ب

CFU Part Number Builder

CFU						_				
Model	Flow	Rate	Power Options	Hose Connection	Special Options	Media 1	Me	dia 2	Seal	
Model	Filter D M2 M9 ¹	Asser 1 x S75 1 x MF 2 x MF	nblies 5D Spin-On fi 110 cartridge 90 cartridge l	lter assembl housing housings	Ŷ	Filter Elem 2 x HP75L8-* 1 x HP110NL1 2 x HP90NL9	nents ** filter I1-*** fil -*** filte	elements ter eleme er elemen	in paralle nt ts in serie	l flow s flow
Flow Rate ²	05 1 2 5	0.5 gpr 1 gpm 2 gpm 5 gpm	m (1.7 lpm) (3.7 lpm) (7.5 lpm) (18.9 lpm)							
Power Options Contact factory for options not listed	Elect 11 12 21 22	rical - 110 V a 120 V a 208-23 208-23	Dual Rated c, 1P , 50Hz, 1 c, 1P , 60Hz, 0V, 1 P, 50Hz, 0V, 1 P, 60Hz,	1 1450 RPM 1750 RPM 1450 RPM 1750 RPM	Exp X11 X12 X21 X22	losion Proo 110 V ac, 1P , 120 V ac, 1P , 220 V ac, 1P , 208-230 V ac,	f 50Hz, 14 60Hz, 1 50Hz, 1 1P , 60H	i50 RPM 750 RPM 450 RPM Hz, 1750 R	Pne 00	eumatic Pneumatically driven air motor & PD pump. FRI & flow meter included.
	Explo	osion p	oroof - Cla	ss 1, Divis	ion 1, Gr	oup C+D pe	er NEC	501 – R	eady for	r outdoor use
Hose Connection	G S W	Female Female Female	e BSPP swive e JIC swivel h e JIC swivel h	el hose ends, nose ends, n nose ends, w	, no wands o wands ⁄ith wands					
Special Options	B C J M	Compl CE ma Add pr Total sy	ete filter bypa rked for mack essure gauge ystem flow m	ass line hinery safety between pur neter (120 cS	/ directive 2 mp & filter a 5t max)	P93Phosphate ester fluid compatibilitytive 2006/42/ECS94Skydrol fluid compatibility modificationilter assemblyUCUL/CSUZOn site start-up training			luid compatibility modificatio patibility modification aining	
Media Selection	G8 D0 1M 3M 6M 10M 16M 25M	$\begin{array}{l} \boldsymbol{\beta3}_{[C]} \geq \\ \boldsymbol{\beta4}_{[C]} \geq \\ \boldsymbol{\beta6}_{[C]} \geq \\ \boldsymbol{\beta11}_{[C]} \geq \\ \boldsymbol{\beta16}_{[C]} \geq \\ \boldsymbol{\beta22}_{[C]} \geq \end{array}$	S 4000 4000 4000 4000 2 4000 2 4000 2 4000		G8 [3A 6A 10A 25A	$\begin{array}{l} \text{Dualglass} + v \\ \beta 4_{[C]} \geq 4000 \\ \beta 6_{[C]} \geq 4000 \\ \beta 11_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \end{array}$	vater re	emoval	Stai 25W 40W 74W 149W	nless wire mesh 25µ nominal 40µ nominal 74µ nominal V 149µ nominal
Seals	B V E-WS⁵	Nitrile Fluoro EPR se	(Buna) carbon eals + stainles	ss steel supp	oort mesh					
¹ When selected omit Med	ia 2 ontion	from part	number builder							

²Nominal flow rates at 60 Hz motor speeds.

⁶When selected, must be paired with Seal option "V" Contact factory for more information or assistance in fluid compatibility. ⁶When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. ⁶Only available in 3M media for HP75L8 series elements.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

FPL Dedicated Off-line Filter Panel

A dedicated contamination solution for bulk oil handling, fluid transfer and reservoir or gearbox conditioning.

Enhance cleanliness by adding the FPL to an existing hydraulic system and extend the life of in-line filters.

hyprofiltration.com/

HY-PRO

Donald

Ready when you are.

From the pump to the seals, every FPL arrives fully assembled and ready for installation so you can get straight to cleaning your fluids and improving the efficiency of your equipment.

The first stage of success.

Staged filtration allows a range of media selections for particulate and water removal to deliver ISO Codes right on target. Choose between dual MF110 cartridge or up to four Spin-On elements to tackle the most viscous fluids and achieve unimaginably low ISO Codes in a single pass.

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $3_{[C]} \ge 4000$, you can be sure contamination stays exactly where you want it: out of your system.

Setting the new standard.

Sample ports in the right locations arm you with access to consistently accurate system conditions which is why every FPL comes standard with upstream and downstream sample ports in their proper positions.

Engineered for industrial use.

Precision engineered and built from heavy gauge steel, the FPL is designed to be a powerhouse addition to your equipment. To top it off, the cast iron gear pump with internal relief gives you the durability you want with the safety you need.

From concept to creation.

Whether for plastic injection molding hydraulics with varnish issues or a wind turbine gearbox with small size restrictions, the FPL can be custom designed and built to meet the exact needs to solve your contamination problems.

FPL Specifications

Dimensions ¹	Height 22″ (58 cm)	Length 42" (107 cm)		Depth 12″ (31 cm)		Weight 138 lbs (63 kg)				
Connections	Inlet with 3-way valve 1″ FNPT			Outlet 1″ FNPT						
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)			Ambient Tempera -4°F to 104°F (-20C to 40C)	ture					
∆P Indicator Trigger	Standard MF110 Assemblies 18 psi (1.2 bar)	Special Option 22 psi (1.5 bar	s D1 `)							
Filter Assembly Bypass	Standard MF110 Assemblies 25 psid (1.7 bard)	Special Option 25 psid (1.7 ba	s D1 ard)							
Materials of Construction	Frame Carbon steel with industrial coa	ame arbon steel with industrial coating								
Electric Motor	EFC, 56-145 frame .5-1 hp, 1450-1750 RPM									
Motor Starter	MSP (motor starter/protector) in an IP65, aluminum enclosure with short circuit and overload protection.									
Pump	Cast iron, positive displacement gear pump with internal relief. Maximum pressure on pump inlet 15 psi (1 bar). Consult factory for higher pressures.									
Pump Bypass	Full bypass at 150 psi (10 bar) ²									
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³									
Media Description	M G8 Dualglass, our latest generat of DFE rated, high performance media for all hydraulic & lubrica fluids. $x_{ C } \ge 4000$ ($x \ge 200$)	tion G8 glass me ition scri	Dualglass high pe dia combined wit m. $x_{[C]} \ge 4000$ ()	erformance h water removal ĸ ≥ 200)	W Stainless media x	steel wire mesh $ C \ge 2$ ($x \ge 2$)				
Replacement Elements	To determine replacement Model Standard FPL (2x MF110 11" bow Special Option D1	elements, us Filta vls) HP1 HP2	se correspondin er Element Part N 110NL11 – [Media 75L8 – [Media Selo	ng codes from y lumber Selection Code] [Se ection Code] [Seal (our equi eal Code] Code]	pment part number: Example HP110NL11-12MV HP75L8-25MB				
Viscosity	2-5000 cSt ⁴									
Fluid Compatibility	Petroleum and mineral based flu contact factory for compatibility skydrol fluid (S9) compatibility s	uids, #2 diesel with fluorocar select fluid com	fuels (standard). F bon seal option. I patibility from sp	For specified synthe For phosphate ester pecial options.	etics r (P9) or					
Hazardous Environment Options	Select pneumatic powered unit Call for IEC, Atex or other requir	(Power Option ements. If Exp	00) or explosion losion Proof optic	proof NEC Article 5 on (X) selected, no	01, Class 1 electrical	I, Division 1, Group C+D. cord will be included.				

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure. ³Air consumption values are estimated maximums and will vary with regulator setting.

When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

FPL		Part	Nu		nber	Bu	uilder	53
Flow Rate	Po	wer Options Special Options	Media 1	Media	2 Seal			
Flow Rate ¹	05 1 2 5 10	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 5 gpm (18.9 lpm) 10 gpm (37.9 lpm)						
Power Options Contact factory for	60 12 22 23	Hz, 1750 RPM 120 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 3P	50 11 21 40	Hz, 14 110 \ 220 \ 380-	450 RPM / ac, 1P V ac, 1P 440 V ac, 3P	Pne 00	eumatic Pneumatically driven air motor & PD pump. FRL 8 flow meter included.	k

525 V ac, 3P

52

X____ Add X prefix to power option listed above. Not available with (00) Pneumatic Option

Explosion proof - Class 1, Division 1, Group C+D per NEC 501 - Ready for outdoor use

Special Options	B C D1 ² D3 E J K M	Complete filter bypas CE marked for machin 2 x S75DL8 filter asse True differential press 100 mesh cast iron ba Add pressure gauge ba HP75L8-149W Spin-Om Total system flow me	ctive 2006/42/EC s ual green to red filter assembly r x)	O P9⁴ S9⁵ U Y Z S2	 On-board PM-1 particle monitor & clean oil indicator light Phosphate ester fluid compatibility modification Skydrol fluid compatibility modification CUL and/or CSA marked starter enclosure for Canada VFD variable speed motor frequency control On site start-up training 51" (130 cm) Mounting Stand - Ships Fully Assembled 			
Media Selection	G8 [1M 3M 6M 10M 16M 25M	$\begin{array}{l} \textbf{Dualglass} \\ \textbf{3}_{ \text{C} } \geq 4000 \\ \textbf{4}_{ \text{C} } \geq 4000 \\ \textbf{6}_{ \text{C} } \geq 4000 \\ \textbf{11}_{ \text{C} } \geq 4000 \\ \textbf{16}_{ \text{C} } \geq 4000 \\ \textbf{22}_{ \text{C} } \geq 4000 \end{array}$	G8 3A 6A 10A 25A	Dualglass + wa $4_{[c]} \ge 4000$ $6_{[c]} \ge 4000$ $11_{[c]} \ge 4000$ $22_{[c]} \ge 4000$	ater re	emoval S 2 4 7 1	Stainless wire mesh 5W 25μ nominal 0W 40μ nominal 4W 74μ nominal 49W 149μ nominal	
Seals	В	Nitrile (Buna)						

ν Fluorocarbon

460-480 V ac, 3P

575 V ac, 3P

46

57

E-WS7 EPR seals + stainless steel support mesh

¹Nominal flow rates at 60 Hz motor speeds.

options not listed

²Replaces standard MF110 housings.

When selected, omit Media 2 option from part number builder. When selected, omit Media 2 option from part number builder. When selected, must be paired with Seal option "V" Contact factory for more information or assistance in fluid compatibility. When Selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. When Special Options "D2" or "P1" selected, use 10M or 10A for respective media code in place of 12M or 12A. 'Only available in 3M media for HP75L8 series elements.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

FC Filter Cart

54

A fully self-contained mobile solution for bulk oil handling, fluid transfer and reservoir or gearbox conditioning.

Ideal for lower viscosity hydraulic oil, lube oil and diesel fuel.

hyprofiltration.com/

Engineered for industrial use.

Rugged construction and attention to the smallest of details come together remarkably so that nothing holds you or your equipment back. The easy to maneuver handtruck style design with never-flat pneumatic tires and cast iron gear pump with internal relief mean you get powerful filtration exactly when and where you need it.

Set the stage for your success.

Staged filtration allows a range of media selections for particulate and water removal to deliver ISO Codes right on target. Choose between dual MF110 cartridge (standard) or up to four Spin-On elements to tackle the most viscous fluids and achieve unimaginably low ISO Codes in a single pass.

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $\beta 3_{[C]} \ge 4000$, you can be sure contamination stays exactly where you want it: out of your systems.

Your standard Filter Cart, reimagined.

Sample ports in the right locations arm you with access to consistently accurate system conditions which is why every FC comes standard with up- and downstream sample ports in their proper positions. And with the 35' (11m) retractable cord reel or 35' air hose for pneumatic models, it's easy to see why the standard FC isn't so standard after all.

With options to make your job easier.

With the optional filter bypass line, cold starts, gearbox pump-outs, and even element change outs become easier than ever. Add the optional PM-1 particle monitor for real time cleanliness data and know exactly how your filtration is performing without the need for a bottle.

Completely customizable.

The FC comes in a variety of flow rates and with electric options that range from 120 to 575 V ac, single or three phase. Or choose the pneumatic and explosion proof models to take your filtration into hazardous zones like you never thought possible. Even color coordinate each FC to your existing safety standards. With thousands of combinations to choose from, the possibilities are endless for what you can do with the FC.

FC Specifications

Dimensions ¹	Height 45″ (114 cm)	Width 20″ (50 cm)	Depth 23″ (58 cm)		Weight 125 lbs (57 kg)							
Connections	Inlet FC05-FC5: 1" male JIC (37° fl FC10: 1.25" male JIC (37° flar FC20: 1.5" male JIC (37° flare	Outlet are) FC05-FC re) FC20: 1.	C10 1″ male JIC (37° flare) 25″ male JIC (37° flare)	Hoses FC05- FC5: FC10: FC20:	1" x 10 ft (2.4 m) 1.25" x 10 ft (2.4 m) suction 1" x 10 ft (2.4 m) discharge 1.5" x 10 ft (2.4 m) suction							
Operating Temperature	Fluid Temperature Ambient Temperature 30°F to 225°F -4°F to 104°F (0°C to 105°C) (-20C to 40C)											
ΔP Indicator Trigger	22 psi (1.5 bar). Consult facto	22 psi (1.5 bar). Consult factory for other options.										
Filter Assembly Bypass	25 psid (1.7 bard). Consult fa	ctory for other optic	ns.									
Materials of Construction	Frame Filter Assemb Industrial Aluminum he coated steel	ly Ho ad & canister Re	ses inforced synthetic	Wands Stainless Steel	Element Bypass Valve Nylon							
Electric Motor	TEFC, 56-215 frame 0.5-3 hp, 1450-1750 RPM											
Motor Starter	MSP (motor starter/protector) in an IP65, aluminum enclosure with short circuit and overload protection.											
Electric Connection	Voltages 230 V ac and under, single phase: 35' (11 m) retractable cord reel included. NEMA 5-15 plug installed on Power Option 12. Voltages over 230 V ac: 35' (11 m) power cord included.											
Pump	Cast iron, positive displacement gear pump with internal relief. Maximum pressure on pump inlet 15 psi (1 bar). Consult factory for higher pressures.											
Pump Bypass	Full bypass at 150 psi (10 bar	·) ²										
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³ 35' (11 m) retractable air hos	e included when pn	eumatic option selected (re	places electric o	cord reel).							
Media Description	M G8 Dualglass, our latest gene of DFE rated, high performar media for all hydraulic & lub fluids. $\beta x_{[c]} \ge 4000 (\beta x \ge 200)$	A eration G8 Dual nce glass media c rication scrim. β	glass high performance ombined with water remov $x_{C} \ge 4000 \ (\beta x \ge 200)$	W Stainless al media βx _ι	steel wire mesh _{c]} ≥ 2 (βx ≥ 2)							
Replacement Elements	To determine replacement Model Standard FC (2x MF110 11" b Special Option D1	ent elements, use Filter El owls) HP110N HP75L8	corresponding codes f ement Part Number L11 – [Media Selection Code – [Media Selection Code] [S	rom your eq e] [Seal Code] Seal Code]	uipment part number: Example HP110NL11-12MV HP75L8-25MB							
Viscosity	2-5000 cSt ⁴											
Fluid Compatibility	Petroleum and mineral base contact factory for compatibi skydrol fluid (S9) compatibili	d fluids, #2 diesel fu ility with fluorocarbo ity select fluid comp	els (standard). For specified on seal option. For phospha atibility from special optior	l synthetics ite ester (P9) or is.								
Hazardous Environment Options	Select pneumatic powered u Call for IEC, Atex or other red	nit (Power Option 0 quirements. If Explo	0) or explosion proof NEC A sion Proof option (X) selec	Article 501, Class Sted, no electric	s 1, Division 1, Group C+D. al cord will be included.							

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

Air consumption values are estimated maximums and will vary with regulator setting. When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

nec (Ex) CE (اپ)

FC Part Number Builder

FC	Po	wer Options Hose Connection	Special Options	Media 1	Media 2	Seal]
Flow Rate ¹	05 1 2 5 10 20 ²	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 20 gpm (75.7 lpm)					
Power Options Contact factory for options not listed	60 Hz 12 22 23 46 57	z, 1750 RPM 120 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P	50 H 11 21 40 52	Hz, 1450 RP 110 V ac, 1P 220 V ac, 1P 380-440 V ac 525 V ac, 3P	PM c, 3P		Pneumatic 00 Pneumatically driven air motor & PD pump. FRL & flow meter included.
	Explo x_	osion proof - Class 1 Add X prefix to power o	, Division ption listed a	1, Group C above. Not ava	+D per N ailable with	EC 501 – Re 1 (00) Pneumat	eady for outdoor use tic Option
Hose Connection	G S W	Female BSPP swivel hos Female JIC swivel hose Female JIC swivel hose	e ends, no v ends, no wa ends, with w	vands nds vands			
Special Options	B C D1 ³ D3 E H1 H2 J	Complete filter bypass li CE marked for machiner 2 x S75DL8 filter assemt True differential pressur 100 mesh cast iron bask 10' (3 m) return line hose 20' (6 m) return line hose Add pressure gauge betw	ne y safety dire olies in series e gauge, visu et strainer (c. extension extension /een pump &	ctive 2006/42/ s Jal green to re an't be paired with h filter assembl	/EC M O ed P9⁴ < option) S9 ⁵ U Z Y	HP75L8-149W (Can't be paired wi Total system On-board PM- Phosphate es Skydrol fluid CUL and/or C On site start-	/ Spin-On suction strainer th K option) flow meter (120 cSt max) 1 particle monitor & clean oil indicator light ster fluid compatibility modification compatibility modification SA marked starter enclosure for Canada up training
Media Selection	G8 D 1M 3M 6M 10M 16M 25M	$\begin{array}{l} \label{eq:basic} \text{Jalglass} \\ \beta 3_{[C]} \geq 4000 \\ \beta 4_{[C]} \geq 4000 \\ \beta 6_{[C]} \geq 4000 \\ \beta 11_{[C]} \geq 4000 \\ \beta 16_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \end{array}$	G8 3A 6A 10A 25A	$\begin{array}{l} \text{Dualglass +} \\ \beta 4_{[C]} \geq 4000 \\ \beta 6_{[C]} \geq 4000 \\ \beta 11_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \end{array}$	water rem	noval s	Stainless wire mesh 25W 25μ nominal 40W 40μ nominal 74W 74μ nominal 149W 149μ nominal
Seals	B V E-WS ⁶	Nitrile (Buna) Fluorocarbon EPR seals + stainless ste	el support m	nesh			

¹Nominal flow rates at 60 Hz motor speeds.

²Contact factory for sizing assistance on all viscosities. ³Replaces standard MF110 housings.

When selected, must be paired with Seal option "V" Contact factory for more information or assistance in fluid compatibility. When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. Only available in 3M media for HP75L8 series elements.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

FSL High Viscosity Filtration Systems

A dedicated contamination solution for bulk oil handling and fluid transfer. Designed to excel in filtering particulate from heavily contaminated oil, the FSL keeps gearbox lubricant clean and equipment running efficiently.

Ideal for high viscosity gearbox or lube applications and highly contaminated fuel applications.

Donaldson. HY-PRO

hyprofiltration.com/

Filtration starts with the filter.

The oversized coreless filter element in every FSL delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.

Weather any condition.

From cold weather to cold starts, the FSL is engineered to easily handle almost any job. Designed to combine incredible capacity and low maintenance, the oversized housing with secure swivel bolts allow for effortless element changes with all the parts kept right where they need to be.

Cleaner fluid + greater reliability.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. And with the cast iron gear pump with internal relief, you get the durability you want with the safety you need, all conveniently in one square foot of floor space.

Options to make your job easier.

By selecting the optional filter bypass line, cold starts and element change-outs become easier than ever. Choose the pneumatic powered model or explosion proof option to match your application and even add the optional PM-1 particle monitor for real time cleanliness data without the need for a bottle.

Setting the new standard.

Every FSL comes standard with sample ports in the right locations to arm you with access to consistently accurate system conditions. And with true differential pressure gages, you'll know exactly how well your filtration is performing.

Completely customizable.

Every FSL can be tailored to meet any application and even to fit your existing safety standards. With the power to filter fluids greater than ISO VG 1500, contamination doesn't stand a chance.

FSL Specifications

Dimensions ¹	Height 50″ (127 cm)	Width 22" (56 c	cm)	Depth 28″ (71 cm)	Wei 222	ght Ibs (101 kg)
Connections	Inlet with 3-way valve FSL05-FSL10: 1" FNPT FSL20-FSL30: 1.5" FNP	т		Outlet FSL05-FSL10: 1" FN FSL20-FSL30: 1.25"	NPT 7 FNPT	
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)			Ambient Temperatu -4°F to 104°F (-20C to 40C)	ıre	
Materials of Construction	Vessel Carbon steel with indus	strial coating				
Electric Motor	TEFC, 56-215 frame 0.5-3 hp, 1450-1750 RPI	M, see Appendix	x for amp ratings.			
Motor Starter	MSP (motor starter/pro	tector) in an IP6	5, aluminum enclosu	are with short circuit	and overload p	otection.
Pump	Cast iron, positive disp on pump inlet 15 psi (1	lacement gear p bar). Consult fa	oump with internal re actory for higher pres	lief. Maximum press sures.	ure	
Pump Bypass	Full bypass at 150 psi (10 bar) ²				
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³					
Media Description	M G8 Dualglass, our lates of DFE rated, high perfo glass media for all hyd lubrication fluids. βx _[c]	t generation ormance raulic & ≥ 4000	A G8 Dualglass high media combined w removal scrim. βx _ι	performance vith water $c_j \ge 4000$	W Stainless steel media $\beta x_{[C]} \ge 2$	wire mesh ⊻ (βx ≥ 2)
Replacement Elements	To determine replace Element Type Code 5 6 7 8X 82 85	Filter Element HP105L[Lengtl HP106L[Lengtl HP107L[Lengtl HP8314L[Lengt] HP8314L[Lengt] HP8314L[Lengt]	ents, use correspo t Part Number h Code] – [Media Selec h Code] – [Media Selec h Code] – [Media Selec th Code] – [Media Selec th Code] – [Media Selec th Code] – [Media Selec th Code] – [Media Selec	rnding codes from ction Code][Seal Code ction Code][Seal Code ction Code][Seal Code ection Code][Seal Coce ection Code][Seal Coce ection Code][Seal Coce	your equipr Example 1 HP1 2 HP1 2 HP1 2 HP1 1 HP3 1 HP8 1 HP8 1 HP8	nent part number: nple D5L36–6AB D6L18–10MV 07L36–VTM710V 314L39–25WV 314L16–12MB 314L39–16ME–WS
Viscosity	2-5000 cSt ⁴					
Fluid Compatibility	Petroleum and mineral contact factory for com skydrol fluid (S9) comp	based fluids, #2 patibility with fl atibility select f	2 diesel fuels (standa luorocarbon seal opti luid compatibility fro	rd). For specified syn ion. For phosphate ei m special options.	thetics ster (P9) or	
Hazardous Environment Options	Select pneumatic powe Class 1, Division 1, Gro Proof option (X) selec	red unit (Power up C+D. Call for ted, no electrica	r Option 00) or explos r IEC, Atex or other re al cord or cord reel wi	sion proof NEC Article quirements. If Explo- ill be included.	e 501, sion	

¹Dimensions are approximations taken from base model and will vary according to options chosen.

210 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

Air consumption values are estimated maximums and will vary with regulator setting. ⁴When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

hyprofiltration.com/

€x C€ (néc) ւ(Սլ

FSL Part Number Builder

						-]_				
Elem	ientType	Element Length	Indicator	Powe	er Options	Special Options		Media	Seal			
05 1 2 5	0.5 gpr 1 gpm 2 gpm 5 gpm	n (1.7 lpm) (3.7 lpm) (7.5 lpm) (18.9 lpm)					10 20 30	10 gpm (37. 20 gpm (75 30 gpm (114	9 lpm) .7 lpm) 4 lpm)			
5 6 7	HP105 HP106 HP107	– no bypas: – 25 psid (1 – 50 psid (3	s .7 bard) integ .4 bard) integ	ıral ele gral ele	ment byp ment byp	oass oass	8X 82 85	HP8314 – n HP8314 – 29 HP8314 – 50	o bypass 5 psid (1. 0 psid (3.	7 bard) 4 bard	integral h) integral h	nousing bypass nousing bypass
18 ² 36 ²	L18 sin L36 sin	gle length f gle length f	filter housing filter housing	and c and c	oreless el oreless el	ement ement	16 ² 39 ²	L16 single l L39 single l	ength fil ength fil	ter hou ter hou	sing and o sing and o	coreless eleme coreless eleme
DE	22 psid 22 psid	visual gau visual gau	ge + electric ge	switch			Н	65 psid visu (elements 5	ial gauge 5 or 8X o	e + eleo nly)	ctric switch	1
F G	45 psid 45 psid	visual gau visual gau	ge + electric ge	switch			J P	65 psid visu 2 pressure	ial gauge gauges (e (elem industr	ents 5 or 8 ial liquid f	3X only) ïlled)
60 H 12 22 23 46 57	z, 1750 120 V a 208-230 208-230 460-480 575 V a) RPM c, 1P) V ac, 1P) V ac, 3P) V ac, 3P c, 3P		50 H 11 21 40 52	1z, 1450 110 V ac 220 V ac 380-440 525 V ac	RPM , 1P c, 1P V ac, 3F c, 3P	0		Pneun 00 P m fl	natic neuma lotor & ow me	tically driv PD pump ter include	ven air . FRL & ed.
Expl x_	osion Add X	p <mark>roof</mark> - Cl prefix to po	ass 1, Divi	<mark>sion</mark> sted a	1, <mark>Grou</mark> bove. Not	p C+D t availab	per ole wi	NEC 501 – th (00) Pneur	Ready	for o	utdoor u	se
A B C D E ³ F G J ⁴ K ³ L	Air coo Comple CE man High fill 100 me Filter e tattle ta Spill ret Add pre HP75L8 High fill Total sy	led heat ex ete filter by rked for ma ter ΔP auto esh cast iror lement ΔP g ale follower ention pan v essure gaug t-149W Spin ter element vstem flow	changer (cor pass line chinery safet shutdown n basket strai gauge with needle vith fork guide e between pu -On suction s ΔP indicator meter (120 c	sult fa y direc ner s (indu imp & t trainer light St max	ctory) trive 2006 strial coate filter asse	6/42/EC ed steel) mbly	O ⁵ P9 ⁶ S ⁷ S9 ⁸ U V W Υ ⁹ Z	On-board PM Phosphate All wetted of Skydrol flui CUL and/or Lifting eye Automatic a VFD variabl On site star	M-1 partic ester flui compone d compa CSA mar Kit air bleed e speed t-up train	le mon d com nts 30 tibility ked sta valve motor ning	itor & clear patibility n 4 or highe modificat rter enclos frequency	n oil indicator lig nodification r stainless stee ion rure for Canada
G8 D	ualglas	S		G8 [Dualglas	s + wat	ter re	emoval	Stainle	ess wii	re mesh	
05M 1M 3M 6L 10M ¹⁰ 16M 25M	$\begin{array}{c} \beta 0.9_{ c } \geq \\ \beta 3_{ c } \geq \\ \beta 5_{ c } \geq \\ \beta 7_{ c } \geq \\ \beta 12_{ c } \geq \\ \beta 12_{ c } \geq \\ \beta 22_{ c } \geq \end{array}$	≥ 4000 4000 4000 4000 4000 4000 4000		3A 6A 10A ¹⁰ 25A	$\begin{array}{l} \beta 5_{[C]} \geq 4 \\ \beta 7_{[C]} \geq 4 \\ \beta 12_{[C]} \geq 6 \\ \beta 22_{[C]} \geq 6 \end{array}$	000 000 4000 4000			25W 29 40W 40 74W 74 149W 14	5μ nom)μ nom 1μ nom 19μ no	ninal ninal ninal minal	
VTM VTM7	10 ¹¹ β0.	9 _(c) ≥ 4000 i	oarticulate, ir	nsolubl	e oxidati	on by-pr	oduc	t and water r	emoval r	nedia		
B V	Nitrile Fluoroo	(Buna) carbon				, r-	_					
	05 1 2 5 6 7 18 ² 36 ² D E F G 60 H 12 22 346 57 Expl X A B C D E ³ F G J ⁴ K ³ L M 05M 1M 3M 6L 10M ¹⁰ 16M 25M VTM VTM7 B	05 0.5 gpr 1 1 gpm 2 2 gpm 5 5 gpm 5 HP105 6 HP106 7 HP107 18 ² L18 sin 36 ² L36 sin D 22 psid E 22 psid G 45 psid G Comple C CE man D High fill Total sy G8 D High fill Total sy G8 OSM $\beta 0.9_{[c]} \ge 4$ M High fill Total sy G8	Element type Length 05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm) 5 5 gpm (18.9 lpm) 5 5 gpm (18.9 lpm) 5 HP105 – no bypass 6 HP106 – 25 psid (1 7 HP107 – 50 psid (3 18 ² L18 single length f 36 ² L36 single length f 36 ² L30 visual gau G 45 psid visual gau G Ado-480 V ac, 3P 57 575 V ac, 3P Explosion proof - Cl X_ Add X pre	Element ype Length 05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm) 5 5 gpm (18.9 lpm) 5 HP105 – no bypass 6 HP106 – 25 psid (1.7 bard) integ 7 HP107 – 50 psid (3.4 bard) integ 7 HP107 – 50 psid (3.4 bard) integ 82 L18 single length filter housing 362 L36 single length filter housing 362 L36 single length filter housing 362 L36 single length filter housing 362 L30 visual gauge + electric filter 6 45 psid visual gauge + electric filter 6 45 psid visual gauge F 45 psid visual gauge F 20 V ac, 1P 22 208-230 V ac, 3P 57 575 V ac, 3P Explosion proof - Class 1, Divi X_ Add X prefix to power option li A Air cooled heat exchanger (con B Complete filter bypass line C CE marked for machinery safet D High filter AP auto shutdown F	Length OS 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm) 5 5 gpm (18.9 lpm) 5 HP105 – no bypass 6 HP107 – 50 psid (3.4 bard) integral ele 7 HP107 – 50 psid (3.4 bard) integral ele 8 ² L18 single length filter housing and cols 36 ² L36 single length filter housing and cols 36 ² L36 single length filter housing and cols 9 22 psid visual gauge + electric switch 6 45 psid visual gauge 60 Hz, 1750 RPM 50 H 12 120 V ac, 1P 11 22 208-230 V ac, 3P 40 46 460-480 V ac, 3P 52 57 575 V ac, 3P 57 Explosion proof - Class 1, Division 7 X_ Add X prefix to power option listed al A Air cooled heat exchanger (consult fa B Complete filter bypass line C C E marked for machinery safety direct D High filter ΔP auto shutdown E ³	Element LengthInductor Length050.5 gpm (1.7 lpm) 111 gpm (3.7 lpm) 222 gpm (7.5 lpm) 555 gpm (18.9 lpm)5HP105 – no bypass 66HP106 – 25 psid (1.7 bard) integral element byp 77HP107 – 50 psid (3.4 bard) integral element byp 7182L18 single length filter housing and coreless el 362D22 psid visual gauge + electric switch EE22 psid visual gauge + electric switch G45 psid visual gauge +F45 psid visual gauge +60 Hz, 1750 RPM50 Hz, 1450 1212120 Vac, 1P11110 Vac 23208-230 Vac, 3P40 4046460-480 Vac, 3P52525 Vac 525 Vac 57575 Vac, 3PExplosion proof - Class 1, Division 1, Grou X_X_Add X prefix to power option listed above. NotAAir cooled heat exchanger (consult factory) B Complete filter bypass line CCCE marked for machinery safety directive 2006 D High filter ΔP auto shutdownFFilter element ΔP gauge with G t attile tale follower needleJ³Spill retention pan with fork guides (industrial coath K³ Add pressure gauge between pump & filter asset L HP75L8-149W Spin-On suction strainer M High filter element ΔP indicator light Total system flow meter (120 cSt max)G8 DualglassG8 Dualglass G8 Dualglass05Mβ0.9 _[c] ≥ 4000 (25A β2c]c ≥ 400016Mβ17 _[$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LengthInducatorLow CynomsOptions050.5 gpm (1.7 lpm)1011 gpm (3.7 lpm)2022 gpm (7.5 lpm)3055 gpm (18.9 lpm)305HP106 - 25 psid (1.7 bard) integral element bypass827HP107 - 50 psid (3.4 bard) integral element bypass8518²L18 single length filter housing and coreless element16²36²L36 single length filter housing and coreless element39²D22 psid visual gauge + electric switchHE22 psid visual gauge + electric switchJG45 psid visual gaugeJP21200 vac, 1P22208-230 Vac, 1P2123208-230 Vac, 3P4046460 480 Vac, 3P5257575 Vac, 3P52Explosion proof - Class 1, Division 1, Group C+D perX_Add X prefix to power option listed above. Not available withAAir cooled heat exchanger (consult factory)0°BComplete filter bypass lineP9°CCE marked for machinery safety directive 2006/42/EC57DHigh filter AP auto shutdownS9°F³100 mesh cast iron basket strainerUFFilter element ΔP indicator light Total system flow meter (120 cSt max)G8 DualglassG8 Dualglass + water re of the filter bindicator light Total system flow meter (120 cSt max)G8 DualglassG8 Dualglass + 4000 S0°G8 DualglassG8 Dualglass + wa	Element type Length Inductor Options Options Options Options 05 0.5 gpm (17,1 lpm) 10 10 gpm (37,1 pm) 20 gpm (75 lpm) 30 30 gpm (11,1 fpm) 1 1 gpm (3,7 lpm) 30 30 gpm (11,1 fpm) 10 10 gpm (37,1 pm) 5 gpm (18,9 lpm) 30 30 gpm (11,1 fpm) 10 10 gpm (37,1 pm) 5 HP105 – no bypass 8X HP8314 – no HP314 – 20 6 HP107 – 50 psid (3,4 bard) integral element bypass 85 HP8314 – 50 18* L18 single length filter housing and coreless element 16* L16 single 1 22 psid visual gauge + electric switch H 65 psid visu (elements E 5 gpid visual gauge J 65 psid visu gauge J 65 psid visu 7 12 120 V ac, 1P 11 110 V ac, 1P 22 pressure 2 pressure 2 60 Hz, 1750 RPM 50 Hz, 1450 RPM 12 208-230 V ac, 3P 52 525 V ac, 3P 7 208-230 V ac, 3P 52 525 V ac, 3P 59 7575 V ac, 3P 59 7 <t< td=""><td>Element type Length Inductor Form options Options<td>Element (p) Length Instant Form Options Options Constant Constant 05 0.5 gpm (1.7 lpm) 10 10 gpm (3.7 lpm) 20 20 gpm (75.7 lpm) 1 1 gpm (3.7 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 2 2 gpm (75.1 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 5 5 gpm (12.7 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 5 HP105 - no bypass 6 HP106 - 25 psid (1.7 bard) integral element bypass 8X HP8314 - 50 psid (3.4 bard) 64 HP107 - 50 psid (3.4 bard) integral element bypass 8Z HP8314 - 50 psid (3.4 bard) 7 HP107 - 50 psid (3.4 bard) integral element bypass 65 psid visual gauge electric switch H 65 psid visual gauge eleactric lements for 8X only) 65 psid visual gauge eleactric lements for 8X only) 65 psid visual gauge (elements for 8X only) 65 psid visual gauge (elements for 8X only) 65 psid visual gauge (elements for 8X only) 75 yr vac, 3P 75 yr vac, 3P 9 75 yr vac, 3P 75 yr vac, 3P 9 70 Pneumaticro 00 <</td><td>DescriptionDescriptionsDescriptionsDescriptionsDescriptions050.5 gpm (17,1 pm)1010 gpm (32,1 pm)2020 gpm (75,1 pm)11 gpm (3,7 lpm)2020 gpm (75,1 pm)3030 gpm (114 lpm)55 gpm (18,8 lpm)3030 gpm (114 lpm)55HP105 - 25 psid (1,7 bard) integral element bypass82HP8314 - 25 psid (1,7 bard) integral element bypass6HP106 - 25 psid (3,4 bard) integral element bypass85HP8314 - 25 psid (1,7 bard) integral element bypass7HP107 - 50 psid (3,4 bard) integral element bypass36'L16 single length filter housing and coreless element36'L36 single length filter housing and coreless element36'L16 single length filter housing and coreless element922 psid visual gauge + electric switchH65 psid visual gauge + electric switch1645 psid visual gaugeJ65 psid visual gauge (elements 5 or 1 grass)1711110 V ac, 1P0018208-230 V ac, 3P50208-230 V ac, 3P52525 V ac, 3P7575 V ac, 3P9208-230 V ac, 3P52208-230 V ac, 3P50208-230 V ac, 3P52208-230 V ac, 3P50208-230 V ac, 3P50208-230 V ac, 3P52208-230 V ac, 4P</td></td></t<>	Element type Length Inductor Form options Options <td>Element (p) Length Instant Form Options Options Constant Constant 05 0.5 gpm (1.7 lpm) 10 10 gpm (3.7 lpm) 20 20 gpm (75.7 lpm) 1 1 gpm (3.7 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 2 2 gpm (75.1 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 5 5 gpm (12.7 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 5 HP105 - no bypass 6 HP106 - 25 psid (1.7 bard) integral element bypass 8X HP8314 - 50 psid (3.4 bard) 64 HP107 - 50 psid (3.4 bard) integral element bypass 8Z HP8314 - 50 psid (3.4 bard) 7 HP107 - 50 psid (3.4 bard) integral element bypass 65 psid visual gauge electric switch H 65 psid visual gauge eleactric lements for 8X only) 65 psid visual gauge eleactric lements for 8X only) 65 psid visual gauge (elements for 8X only) 65 psid visual gauge (elements for 8X only) 65 psid visual gauge (elements for 8X only) 75 yr vac, 3P 75 yr vac, 3P 9 75 yr vac, 3P 75 yr vac, 3P 9 70 Pneumaticro 00 <</td> <td>DescriptionDescriptionsDescriptionsDescriptionsDescriptions050.5 gpm (17,1 pm)1010 gpm (32,1 pm)2020 gpm (75,1 pm)11 gpm (3,7 lpm)2020 gpm (75,1 pm)3030 gpm (114 lpm)55 gpm (18,8 lpm)3030 gpm (114 lpm)55HP105 - 25 psid (1,7 bard) integral element bypass82HP8314 - 25 psid (1,7 bard) integral element bypass6HP106 - 25 psid (3,4 bard) integral element bypass85HP8314 - 25 psid (1,7 bard) integral element bypass7HP107 - 50 psid (3,4 bard) integral element bypass36'L16 single length filter housing and coreless element36'L36 single length filter housing and coreless element36'L16 single length filter housing and coreless element922 psid visual gauge + electric switchH65 psid visual gauge + electric switch1645 psid visual gaugeJ65 psid visual gauge (elements 5 or 1 grass)1711110 V ac, 1P0018208-230 V ac, 3P50208-230 V ac, 3P52525 V ac, 3P7575 V ac, 3P9208-230 V ac, 3P52208-230 V ac, 3P50208-230 V ac, 3P52208-230 V ac, 3P50208-230 V ac, 3P50208-230 V ac, 3P52208-230 V ac, 4P</td>	Element (p) Length Instant Form Options Options Constant Constant 05 0.5 gpm (1.7 lpm) 10 10 gpm (3.7 lpm) 20 20 gpm (75.7 lpm) 1 1 gpm (3.7 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 2 2 gpm (75.1 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 5 5 gpm (12.7 lpm) 30 30 gpm (11.7 lpm) 30 30 gpm (11.7 lpm) 5 HP105 - no bypass 6 HP106 - 25 psid (1.7 bard) integral element bypass 8X HP8314 - 50 psid (3.4 bard) 64 HP107 - 50 psid (3.4 bard) integral element bypass 8Z HP8314 - 50 psid (3.4 bard) 7 HP107 - 50 psid (3.4 bard) integral element bypass 65 psid visual gauge electric switch H 65 psid visual gauge eleactric lements for 8X only) 65 psid visual gauge eleactric lements for 8X only) 65 psid visual gauge (elements for 8X only) 65 psid visual gauge (elements for 8X only) 65 psid visual gauge (elements for 8X only) 75 yr vac, 3P 75 yr vac, 3P 9 75 yr vac, 3P 75 yr vac, 3P 9 70 Pneumaticro 00 <	DescriptionDescriptionsDescriptionsDescriptionsDescriptions050.5 gpm (17,1 pm)1010 gpm (32,1 pm)2020 gpm (75,1 pm)11 gpm (3,7 lpm)2020 gpm (75,1 pm)3030 gpm (114 lpm)55 gpm (18,8 lpm)3030 gpm (114 lpm)55HP105 - 25 psid (1,7 bard) integral element bypass82HP8314 - 25 psid (1,7 bard) integral element bypass6HP106 - 25 psid (3,4 bard) integral element bypass85HP8314 - 25 psid (1,7 bard) integral element bypass7HP107 - 50 psid (3,4 bard) integral element bypass36'L16 single length filter housing and coreless element36'L36 single length filter housing and coreless element36'L16 single length filter housing and coreless element922 psid visual gauge + electric switchH65 psid visual gauge + electric switch1645 psid visual gaugeJ65 psid visual gauge (elements 5 or 1 grass)1711110 V ac, 1P0018208-230 V ac, 3P50208-230 V ac, 3P52525 V ac, 3P7575 V ac, 3P9208-230 V ac, 3P52208-230 V ac, 3P50208-230 V ac, 3P52208-230 V ac, 3P50208-230 V ac, 3P50208-230 V ac, 3P52208-230 V ac, 4P

[®]When selected, must be paired with Seal option "V" Contact factory for more information or assistance in fluid compatibility.

With exception to cast iron gear pump. When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility. "Y" option not available with "O" option.

¹⁰For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A.

¹Only available on HP107 series elements. Flow rate should not exceed 16 gpm (60 lpm) for HP107L36-VTM710* elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements. For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

FSLD High Viscosity Dual Filter Skids

A dedicated contamination solution for off-line conditioning and bulk oil handling. Dual housings allow flexibility in using staged element ratings to achieve remarkably clean fluids and hit target ISO Codes in fewer passes, all while extending filter element and oil life.

Ideal for conditioning reclaimed fluids or fluids with high dirt load.

Donaldson. HY-PRO[™]

hyprofiltration.com/

Dynamic duo.

Combine a number of media options in the dual FSL filter housings to maximize single pass efficiency and achieve lower ISO Codes even faster than you thought possible.

Engineered for Industrial use.

Rugged construction and attention to the smallest of details come together remarkably so that nothing holds you or your equipment back. The standard spill retention pan and cast iron pump with internal relief mean you get the power and durability you want with the safety you have to have. To top it off, the standard 3-way inlet valve allows you to add new oil through the filter to stop contamination before it can ever enter your system.

Filtration starts with the filter(s).

The FSLD's dual oversized coreless filter elements deliver lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass, giving you time back from unnecessary gearbox rebuilds and letting you focus on what really matters.

Make your filtration count.

With the optional filter bypass line, cold starts and element change outs become easier than ever. Add to that the PM-1 Particle Monitor for real time cleanliness data and watch your ISO Codes drop like you'd never believe.

Setting the new standard.

Every FSLD comes standard with sample ports in the proper locations to arm you with access to consistently accurate system conditions. And with true differential pressure gages, you'll always know exactly how well your filtration is performing.

Completely customizable.

Every FSLD can be tailored specifically to your application whether you're dealing with high viscosities, cold weather, or temperature sensitive components so you get the perfect solution to your contamination problems.

FSLD Specifications

Dimensions ¹	Height 55″ (139 cm)	Length 48″ (121 cm)	Width 32″ (81 cm)	Weight 484 lbs (219 kg)				
Connections	Inlet with 3-Way Valve FSLD05-FSLD10: 1" FNPT FSLD20-FSLD30: 1.5" FNPT		Outlet FSLD05-FSLD10: 1" FNPT FSLD20-FSLD30: 1.25" FNPT					
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)					
Materials of Construction	Housings Carbon steel with industrial coating	Tray Carbon steel with industrial coating						
Electric Motor	TEFC, 56-215 frame 1-5 hp, 1450-1750 RPM							
Motor Starter	MSP (motor starter/protector) in an IP65, aluminum enclosu	are with short circuit and overlo	ad protection.				
Pump	Cast iron, positive displacem on pump inlet 15 psi (1 bar).	ent gear pump with internal re Consult factory for higher pres	lief. Maximum pressure sures.					
Pump Bypass	Full bypass at 150 psi (10 bar) ²						
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³							
Media Description		A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[C]} \ge 4000$	W Stainless steel wire mesh media $\beta x_{[C]} \ge 2 \ (\beta x \ge 2)$	VTM $\beta 0.9_{[C]} \ge 4000$ particulate, insoluble oxidation by-product and water removal media				
Replacement Elements	To determine replacement elements, use corresponding codes from your equipment part number Element Type Code Filter Element Part Number Example 5 HP105L[Length Code] – [Media Selection Code][Seal Code] HP105L36–6AB 6 HP106L[Length Code] – [Media Selection Code][Seal Code] HP106L18–10MV 7 HP107L[Length Code] – [Media Selection Code][Seal Code] HP107L36–VTM710V 8X HP8314L[Length Code] – [Media Selection Code][Seal Code] HP8314L39–25WV							
	82 HP83 85 HP831	4L[Length Code] – [Media Selec 4L[Length Code] – [Media Selec	tion Code][Seal Code] tion Code][Seal Code]	HP8314L16–12MB HP8314L39–16ME–WS				
Viscosity	2-5000 cSt ⁴							
Fluid Compatibility	Petroleum and mineral based contact factory for compatibi skydrol fluid (S9) compatibili	d fluids, #2 diesel fuels (standa lity with fluorocarbon seal opti ty select fluid compatibility fro	rd). For specified synthetics ion. For phosphate ester (P9) of m special options.					
Hazardous Environment Options	Select pneumatic powered u Class 1, Division 1, Group C+ Proof option (X) selected, n	nit (Power Option 00) or explos D. Call for IEC, Atex or other re o electrical cord or cord reel wi	sion proof NEC Article 501, equirements. If Explosion ill be included.					

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure. ³Air consumption values are estimated maximums and will vary with regulator setting. ⁴When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

FSLD Part Number Builder

FSLD									-		_					
 FI	ow Rate	Flow Type	ElementType	Element Length	Indi	icator	Power Options			Special Options	l	Media 1	Media 2	Seal		
Flow Rate ¹	05 1 2 5	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 5 gpm (18.9 lpm)							10 10 gpm (37.9 lpm) 20 gpm (75.7 lpm) 30 30 gpm (114 lpm)							
Flow Type	D ² P ² S	Duplex Parallel Series	Duplex Parallel Series													
Element Type	5 6 7	HP105 – no HP106 – 25 HP107 – 50	HP105 – no bypass HP106 – 25 psid (1.7 bard) integral element bypass HP107 – 50 psid (3.4 bard) integral element bypass							HP8314 – r HP8314 – 2 HP8314 – 5	10 25 50	bypass psid (1.7 ba psid (3.4 ba	ard) integral ard) integra	housing byp I housing byp	oass oass	
Element Length	18 ³ 36 ³	L18 single l L36 single l	ength filter I ength filter I	nousing and housing and	l co l co	reless el reless el	ement ement	16 ³ 39 ³	3	L16 single L39 single	leı leı	ngth filter h ngth filter h	nousing and nousing and	l coreless ele l coreless ele	ment ment	
∆P Indicato	r D E F	22 psid visu 22 psid visu 45 psid visu	ial gages + e ial gages ial gages + e	electric swite	ches	5		н		65 psid vis (elements	ua 5 c	l gages + e or 8X only)	electric swite	ches		
	G	45 psid visu	ial gages			_		J P X		65 psid vis 2 pressure None (port	ua ga ts p	l gages (el ages (indus olugged)	ements 5 of strial liquid	filled)		
Power Options Contact factory for options not listed	60 ⊢ 12⁴ 22 23 46 57	z, 1750 RF 120 V ac, 1F 208-230 V a 208-230 V a 460-480 V a 575 V ac, 3F	2M c, 1P c, 3P c, 3P	5 1' 2' 4' 5'	0 H 1⁴ 1 2	iz, 145 110 V a 220 V a 380-44 525 V a) RPM c, 1P c, 1P) V ac, 3 c, 3P	Ρ				Pneuma 00 Pneu pum	tic umatically c ip. FRL & flo	lriven air mo ow meter inc	tor & PD uded.	
	Exp x_	losion pro Add X prefi	of - Class x to power o	1, Divisio	n 1 Lab	, <mark>Grou</mark> ove. Not	p C+D availab	<mark>per</mark> le w	· r vitl	NEC 501 - n (00) Pneu	- F	Ready for atic Option	r outdoor	use		
Special Options	A B C D ⁵ E F J K L ⁵ M	Air cooled I Complete fi CE marked High filter // 100 mesh c Filter eleme Add pressu HP75L8-149 High filter el Total system	heat exchang liter bypass for machine ΔP auto shut ast iron bas ent ΔP gauge re gauge bet W Spin-On s lement ΔP in n flow mete	ger (consult line ry safety dir down ket strainer with tattle ween pump uction strain dicator light r (120 cSt m	fact recti tale & fil er t iax)	tory) ive 2006 followe Iter assei	/42/EC r needle mbly	0 P9 ⁶ R S ⁷ S9 ⁸ U V V W Y Z	8	On-board P Phosphate Spill retenti All wetted Skydrol flu CUL and/or Lifting eye Automatic VFD variab On site sta	M co id co id co ki ai	1 particle m ster fluid co pan with w mponents compatibi SA marked t r bleed val speed mo up training	nonitor & clea ompatibility heels (indus 304 or high lity modific starter enclo ve tor frequence	an oil indicato modificatior trial coated ste er stainless s ation osure for Cana cy control	r light eel) steel ada	
Media Selection	G8 E 05M 1M 3M 6L 10M ⁹ 16M 25M	$\begin{array}{l} \text{Dualglass} \\ \beta 0.9_{(c)} \geq 4000 \\ \beta 3_{(c)} \geq 4000 \\ \beta 5_{(c)} \geq 4000 \\ \beta 7_{(c)} \geq 4000 \\ \beta 12_{(c)} \geq 4000 \\ \beta 12_{(c)} \geq 4000 \\ \beta 17_{(c)} \geq 4000 \\ \beta 22_{(c)} \geq 400 \end{array}$	00 0 0 0 0	6/ 3/ 6/ 10 2!	38 C A A 0A ⁹ 5A	$\begin{array}{l} \beta 5_{[c]} \geq 4 \\ \beta 7_{[c]} \geq 4 \\ \beta 7_{[c]} \geq 4 \\ \beta 12_{[c]} \geq 4 \\ \beta 22_{[c]} \geq 5 \end{array}$	s + wate 1000 1000 4000 4000	er re	err	noval		Stainless 25W 25μ 40W 40μ 74W 74μ 149W 149μ	wire mes nominal nominal nominal nominal	h		
	VTM VTM710 ¹⁰ $\beta 0.9_{ C } \ge 4000$ particulate, insoluble oxidation						on	Ba BA	ig G	filter ¹¹ #2 size ba	ag	housing 25	ōµ nominal			
Seals	B V E-WS	Nitrile (Bun Fluorocarbo EPR seals +	a) on • stainless st	eel support	me	sh										
¹ Nominal flow rates a ² When selected, omit ³ Compatibility will be ⁴ High amp draw on 1 ⁵ Requires ΔP Indicato ⁶ When selected, mus ³ When selected, mus ⁶ For elements HP831 ¹⁰ Only available on H ¹⁰ Available in series 1	at 60 Hz m Media 2 c based on 0 GPM mc or option w t be paired st iron gea t be paired 4, use 12M P107 serie housing c	otor speeds. option from part r Element Type sel dels. Estimated f vith electric switcl d with Seal optior ar pump. d with Seal optior l or 12A for respe s elements. Flow nI/v. Replaces Fle	number builder. ELA 18. See Appy a selected (optio "V." Contact fac a "E-WS." Contact ctive media cod rate should not ment Twoe in se	Element chosen ents HP105, HP endix for details ns D, F, H). ctory for more ir ct factory for more e in place of 100 exceed 16 gpm ries 1 housino	n will 106, a nform ore in VI or (60 l	be supplie and HP107, nation or as formation 10A. pm) for HP	d for both use Lengtl ssistance ir or assistan 107L36-VT	filter I n code n fluid ce in M710	ho e 3 d co flu * e	usings. 6. Length code ompatibility. id compatibilit lements and 8	9 39 ty. gp	only compatil m (30 lpm) for	ble with HP8314 HP107L18-VTN	I. 1710* elements.		

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

FSW Wall Mounted Filtration Systems

A compact, dedicated off-line contamination solution ideal for small reservoirs, gearboxes and diesel engine crankcase conditioning. Element media options for every application including particulate removal, water absorption, varnish and acid removal.

Compact and compatible, the FSW is the perfect off-line filtration system for removing contamination from your systems and making sure they remain in peak operating condition.

User friendly on a whole new scale.

With everything you need together in one tiny little package, FSW service and operation couldn't be easier. From the top loading housing to sample ports, the FSW is built to match powerful filtration with your convenience. And with the no-tools-required swing bolt enclosure, worrying about lost parts during service becomes a thing of the past.

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 3_{[C]} > 4000 + water$ absorption and integral element bypass valves, you get the perfect element for your application, every time.

ICB Advanced Resin Technologies.

ICB canisters treat your oil on a molecular level removing acids, soluble oxidation by-products (varnish), dissolved metals, and extending useful fluid life by protecting AO additives or improving FRF resistivity. Let us help you pick the right ICB media for your turbine & compressor lube oil varnish challenges or to help you achieve trouble free phosphate ester maintenance.

AW oils, say goodbye to varnish.

FSW fitted with VTM media removes insoluble varnish and water while delivering incredibly low ISO Codes. Ideal for plastic injection molding and steel mill hydraulics with sensitive servo controls that fall victim to high temperature related insoluble varnish issues.

Dedicated to your success.

The FSW provides dedicated off-line filtration to help you stay in control of total system cleanliness and prolong the life of your critical components. And with standard sample ports in their proper positions, you'll be able to see just how good it can be running your equipment with clean oil.

Small size, huge results.

FSW provides world class filtration in all the tight spaces where you need it most with a compact wall mount arrangement. Combine FSW with a second LFW modular housing for multiple filtration passes, or to combine ICB and particulate removal technologies in series for the perfect comprehensive filtration system.

FSW Specifications

Dimensions ¹	Height 22" (56 cm)	Width 22" (56 cm)	Depth 13" (33 cm)	Weight 138 lbs (63 kg)
Mounting & Clearance	Contact factory for detailed s	system and mount	ing dimensions.	
Connections	Inlet ¾" male JIC 37° flare		Outlet ¾" male JIC 37° f	lare
Operating Temperature	Dualglass, Stainless wire mes 30°F to 225°F (0°C to 105°C)	h,VTM ICB 86°F to (30°C t	o 176°F o 80°C)	Ambient Temperature -4°F to 104°F (-20C to 40C)
Materials of Construction	Vessel Carbon steel with industrial o	coating		
Electric Motor	TEFC, 56 frame ½-1 hp, 1450-1750 RPM			
Motor Starter	Motor starter with overload p	protection.		
Pump	Cast iron, positive displacem on pump inlet 15 psi (1 bar).	ent gear pump wi Consult factory fo	th internal relief. Maximum pre r higher pressures.	essure
Pump Bypass	Full bypass at 150 psi (10 bar	•)		
Pneumatic Option Air Consumption	~15 cfm @ 60 psi ²			
Media Description	M G8 Dualglass, our latest gene of DFE rated, high performar glass media for all hydraulic lubrication fluids. $βx_{[C]} \ge 4000$	A eration G8 Du ce media & remov O	alglass high performance combined with water al scrim. $\beta x_{[C]} \ge 4000$	W Stainless steel wire mesh media $\beta x_{[C]} \ge 2 \ (\beta x \ge 2)$
	VTM $\beta 0.9_{[C]} \ge 4000$ particulate, insoluble oxidation by-produ and water removal media	ICB Ion cha varnisi metal	arge bonding resin media for m h deposits, soluble oxidation by ions. Contact factory for fluid s	nolecular removal of acids, /-products and dissolved pecification.
Replacement Elements	To determine replaceme Element Type Code 4 6 7	ent elements, us Filter Element Pa ICB – 601946 – [I0 HP106L10 – [Med HP107L10 – [Med	se corresponding codes fro art Number CB Media Selection Code] lia Selection Code] [Seal Code] lia Selection Code] [Seal Code]	om your equipment part number: Example ICB-601946-J HP106L10-10AB HP107L10-3MV
Viscosity	10-5000 cSt ³			
Fluid Compatibility	Petroleum and mineral base contact factory for compatibi skydrol fluid (S9) compatibili	d fluids, #2 diesel t ility with fluorocar ity select fluid com	fuels (standard). For specified s bon seal option. For phosphate patibility from special options.	ynthetics ester (P9) or
Hazardous Environment Options	Select pneumatic powered un for IEC, Atex or other requirem	it (Power Option 00 nents. If Explosion F) or explosion proof NEC Article Proof option (X) selected, no ele	501, Class 1, Division 1, Group C+D. Call ctrical cord or cord reel will be included.
Filter Sizing Guidelines	LFW filter sizing guidelines.			
¹ Dimensions are approxima	ations taken from base model and will v	ary according to options	chosen.	

(Ex) CE

SP

c(UL)

²Air consumption values are estimated maximums and will vary with regulator setting. ³When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

FSW Part Number Builder

69

FSW						-	-					
Flow Ra	ite	ElementType Element Length	Indicator	P	ower Options	Special Options		Media	Seal		1	
Flow Rate ¹	02 05 1 2 5	0.2 gpm (0.75 lpm 0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 5 gpm (18.9 lpm))									
Element Type	4 ² 6 7	ICB-601946 HP106 coreless el HP107 coreless el	ement, 25 psid ement, 50 psid	(1.7 (3.4	bard) integ bard) integ	ral elemen ral elemen	t byp t byp	ass ass				
Element Length	10	L10 single length	filter housing a	nd e	lement							
ΔP Indicator	D E F G P ³	22 psid visual gau 22 psid visual gau 45 psid visual gau 45 psid visual gau 2 pressure gages	ige + electric sw ige ige + electric sw ige (industrial liqui	vitch vitch d fill	led)							
Power Options Contact factory for options not listed	60 12 22 23 46 57	Hz, 1750 RPM 120 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P		50 H 11 21 40 52	Hz, 1450 F 110 V ac, 1 220 V ac, 380-440 V 525 V ac,	RPM IP 1P ac, 3P 3P			Pneu 00	matic Pneuma motor 8 flow me	tically drive PD pump. ter included	en air FRL & d.
	Exp x_	olosion proof - C Add X prefix to pr	lass 1, Divisi	on ed a	1, Group bove. Not a	C+D per available w	· NE(vith (0	C 501 – 0) Pneum	Ready	<mark>for ou</mark> ion	tdoor use)
Special Options	B C F J O P9⁴	Complete filter by CE marked for ma Filter element ∆P Add pressure gau On-board PM-1 pa Phosphate ester f	pass line achinery safety o gauge with tatt ge between pur article monitor a luid compatibili	direo le ta mp 8 & cle ty m	ctive 2006/4 le follower & filter asse ean oil indio nodification	2/EC needle mbly ator light	S2 S9 ⁵ U V W Y ⁶ Z	51" (130 ships fu Skydrol CUL and Lifting e Automa VFD var On site	cm) Mou Ily assem I fluid co d/or CSA i eye kit atic air bl riable sp start-up	unting st ibled mpatibil marked s eed valv eed mot training	and – ity modifica tarter enclos re or frequenc	ation sure for Canada sy control
Media	G8	Dualglass		G8 I	Dualglass	+ water r	emo	val	Stain	less wi	re mesh	
Selection	05M 1M 3M 6L 10N 16N 25N	$ \begin{array}{c} \beta 0.9_{[c]} \geq 4000 \\ \beta 3_{[c]} \geq 4000 \\ \beta 5_{[c]} \geq 4000 \\ \beta 7_{[c]} \geq 4000 \\ \beta 7_{[c]} \geq 4000 \\ 1 \beta 12_{[c]} \geq 4000 \\ 1 \beta 22_{[c]} \geq 4000 \\ 1 \beta 22_{[c]} \geq 4000 \end{array} $		1A 3A 6A 10A 25A	$\begin{array}{l} \beta 3_{[c]} \geq 400 \\ \beta 5_{[c]} \geq 400 \\ \beta 7_{[c]} \geq 400 \\ \beta 7_{[c]} \geq 400 \\ \beta 12_{[c]} \geq 400 \\ \beta 12_{[c]} \geq 400 \\ \beta 22_{[c]} \geq 40 $	00 00 00 000 000			25W 40W 74W 149W	25μ non 40μ non 74μ non 149μ no	ninal ninal ninal minal	
	VT	M		CB	– max re	servoir s	size					
	VTN	1710 ⁷ β0.9 _[C] ≥ 4000 p insoluble oxida by-product and removal media	oarticulate, I ation I d water I a I	CBA CBJ CBT CBV	^{N®} Phosphat ^{I®} Jet lube a ^{T®} Specified ^{I®} Mineral b	e ester – 1! eroderivat fluids – 60 ased R&O	50 gal ive – 0 gal turbii	l (567 lite 100 gal (3 (2271 lite ne/compr	rs) 376 liters ers) ressor lu) be oil – 4	400 gal (151	4 liters)
Seals	B V E-W	Nitrile (Buna) Fluorocarbon S EPR seals + stainl	ess steel suppo	rt m	esh							

³Required when selected with ICB media from Element Type.

"When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. "When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

6"Y" option not available with "O" option.

⁷Only available on HP107 series elements. Flow rate should not exceed 4 gpm (15 lpm) for HP107L10-VTM710* elements.

⁸Compatible only with Flow Rate "02" and Element Type "4"

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

FCL High Viscosity Filter Cart

A self contained solution for high viscosity bulk oil handling, fluid transfer and reservoir or gearbox conditioning.

Ideal for higher viscosity lube oil and highly contaminated fuel and hydraulic oil.

hyprofiltration.com/

Built-in versatility.

From cold weather to cold starts, the FCL is engineered to easily handle almost any job you can throw at it. Rugged construction including the heavy duty, oversized filter housing and cast iron gear pump with internal relief all come together so that you can be sure the FCL will tackle your application with ease.

Filtration starts with the filter.

The oversized coreless filter element in every FCL delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.

Unmatched on the move.

Non-shredding wheels, optional off-road, heavy duty tires, and easy to maneuver cart design with ergonomic handle mean you get powerful filtration exactly when and where you need it.

Setting the new standard.

Sampling is no longer an option, it's a necessity. That's why every FCL comes standard with upstream and downstream sample ports located in the proper positions for best practice oil sampling. You'll get consistently accurate readings and a first hand view at just how well your FCL is working.

With options to make your job easier.

Use the FCL to pump out your gearbox or to ease cold starts and get your system up to temperature faster with the optional complete filter bypass line. Add on the PM-1 Particle Monitor to see real time ISO Codes of your fluid and you'll be amazed to watch how effective your FCL will be.

Completely customizable.

Tailor your FCL specifically to your application with options including pneumatic or explosion proof models, CE and CUL marks, and stainless steel construction for safety and compatibility with your existing systems. And if you're nice, we'll even let you trick it out with a custom paint job.

FCL Specifications

Dimensions ¹	Height 57″ (144 cm)	Width 30″ (77 ci	m)	Depth 30″ (77 cm)	N S	Weight 351 lbs (159 kg)
Connections	Inlet FCL05-FCL5: 1″ male JIC (3 FCL10: 1.25″ male JIC (37° FCL20-FCL30: 1.5″ male JIC	17° flare) flare) C (37° flare)	Outlet FCL05-FCL10: 1" m FCL20-FCL30: 1.25'	aale JIC (37° flare) ″ male JIC (37° flare)	Hoses FCL05-FC FCL10: FCL20- FCL30:	L5: 1" x 10 ft (2.4 m) 1.25" x 10 ft (2.4 m) suction 1" x 10 ft (2.4 m) discharge 1.5" x 10 ft (2.4 m) suction 1.25" x 10 ft (2.4 m) discharge
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)			Ambient Temperatur -4°F to 104°F (-20C to 40C)	e	
Materials of Construction	Housing Carbon steel with industrial coating	Hoses Reinforce	ed synthetic	Wands Stainless steel		
Electric Motor	TEFC, 56-215 frame 0.5-3 hp, 1450-1750 RPM, s	ee Appendix	for amp ratings.			
Motor Starter	MSP (motor starter/protect	or) in an IP65	i, aluminum enclosu	re with short circuit a	nd overloa	d protection.
Electric Connection	Voltages 230 V ac and under included. NEMA 5-15 plug ir Voltages over 230 V ac: 35'	, single phase Istalled on Por (11 m) loose	: 35′ (11 m) retractabl wer Option 12. cord included.	e cord reel		
Pump	Cast iron, positive displace on pump inlet 15 psi (1 bar	ment gear pu). Consult fac	ump with internal re story for higher pres	lief. Maximum pressu sures.	re	
Pump Bypass	Full bypass at 150 psi (10 b	ar)²				
Pneumatic Option Air	~40 cfm @ 80 psi ³ 35' (11 m) retractable air ho	ose included	when pneumatic op	tion selected. Replaces	s 35′ (11m)	electric cord reel.
Madia	Μ	^		\A/		/TN/
Description	G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 40$	G8 Dualg performa combined removal s	lass high nce media d with water scrim. $βx_{[C]} \ge 4000$	Stainless steel wire r media $\beta x_{[c]} \ge 2$ ($\beta x \ge$	mesh (2) i I	30.9 _{ICI} ≥ 4000 particulate, nsoluble oxidation by-product and water removal media
Replacement Elements	To determine replacemElement Type CodeFilter5HP16HP17HP1	nent elemen er Element Pa 05L[Length (06L[Length (07L[Length (nts, use correspo art Number Code] – [Media Sele Code] – [Media Sele Code] – [Media Sele	nding codes from ction Code][Seal Code ction Code][Seal Code ction Code][Seal Code	your equ []]	ipment part number: Example HP105L36–6AB HP106L18–10MV HP107L36–VTM710V
	8X HP8 82 HP8 85 HP8	314L[Length 314L[Length 314L[Length	Code] – [Media Sel Code] – [Media Sel Code] – [Media Sel	ection Code][Seal Cod ection Code][Seal Cod ection Code][Seal Cod	le] H le] H le] H	HP8314L39–25WV HP8314L16–12MB HP8314L39–16ME–WS
Viscosity	2-5000 cSt ⁴					
Fluid Compatibility	Petroleum and mineral bas contact factory for compati skydrol fluid (S9) compatib	ed fluids, #2 bility with flu ility select flu	diesel fuels (standar lorocarbon seal opti lid compatibility fro	rd). For specified synth on. For phosphate est m special options.	netics er (P9) or	
Hazardous Environment Options	Select pneumatic powered Class 1, Division 1, Group (Proof option (X) selected,	unit (Power C+D. Call for no electrical	Option 00) or explos IEC, Atex or other re cord or cord reel wi	ion proof NEC Article quirements. If Explosi II be included.	501, on	

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

Air consumption values are estimated maximums and will vary with regulator setting. ⁴When sized and installed appropriately. Contact factory for applications above 800 cSt for sizing requirements.

FCL Part Number Builder

73

FCL									_	_			
Flow Rate	Eler	nent Type	Element Length	Indicator	Pow	er Options	Hose Connectio	on	Special Options	Media] [Seal		
Flow Rate ¹	05 1 2 5	0.5 gpn 1 gpm 2 gpm 5 gpm	n (1.7 lpm) (3.7 lpm) (7.5 lpm) (18.9 lpm)					10 20 30	10 gpm (37.9 20 gpm (75.7 30 gpm (114 l	lpm) lpm) lpm)			
Element Type	5 6 7	HP105 - HP106 - HP107 -	- no bypass - 25 psid (1. - 50 psid (3	s 7 bard) integ 4 bard) integ	gral ele gral ele	ement by ement by	pass pass	8X 82 85	HP8314 – no HP8314 – 25 HP8314 – 50	bypass psid (1.7 ba psid (3.4 ba	rd) integral h rd) integral h	ousing b ousing b	ypass ypass
Element Length	18 ² 36 ²	L18 sin L36 sin	gle length f gle length f	ilter housing ilter housing	g and c g and c	oreless e oreless e	element element	16 ² 39 ²	L16 single ler L39 single ler	ngth filter h ngth filter h	ousing and c ousing and c	oreless e oreless e	lement lement
∆P Indicator	D E F G	22 psid 22 psid 45 psid 45 psid	visual gaug visual gaug visual gaug visual gaug	ge + electric ge ge + electric ge	switch switch			H J P	65 psid visua (elements 5 c 65 psid visua 2 pressure ga	Il gauge + e or 8X only) Il gauge (ele ages (indus	lectric switch ements 5 or 8 trial liquid fill	BX only) led)	
Power Options Contact factory for options not listed	60 F 12 22 23 46 57	Iz, 1750 120 V a 208-230 208-230 460-480 575 V a	0 RPM c, 1P) V ac, 1P) V ac, 3P) V ac, 3P c, 3P		50 F 11 21 40 52	Hz, 1450 110 V ad 220 V a 380-440 525 V a) RPM c, 1P c, 1P) V ac, 3 c, 3P	Р		Pneumat 00 Pneu pum	ic Imatically dri p. FRL & flow	ven air m v meter ir	notor & PD ncluded.
	Exp x_	l <mark>osion</mark> p Add X	proof - Cl	ass 1, Divi wer option I	ision isted a	1, Grou bove. No	ip C+D ot availa) per ble w	• NEC 501 – rith (00) Pneum	Ready fo	r outdoor	use	
Hose Connection	G S W	Female Female Female	BSPP swiv JIC swivel JIC swivel	el hose ends hose ends, r hose ends, v	s, no w no war with wa	vands nds ands							
Special Options	B C D E F G H1 H2 J K L	Comple CE mar High fil 100 me Filter el tattle ta Spill ret (industr 10' (3 m 20' (6 m Add pre HP75L8 High filt	ete filter by ked for ma ter ΔP auto sh cast iror lement ΔP g ile follower ention pan v ial coated sto p return line essure gauge -149W Spin- ter element	bass line chinery safet shutdown basket stra jauge with needle with fork guide cel) hose extens hose extens between pu On suction s ΔP indicator	ty direct iner es ion ump & strainer light	ctive 200	6/42/EC	M O P9 ³ R S ⁴ S9 ⁵ T ⁶ U W Y Z	Total system On-board PM- Phosphate es Spill retention wheels (indus All wetted co Skydrol fluid Foam filled o CUL and/or C Automatic ai VFD variable On site start-	flow meter 1 particle m ster fluid co pan with 4.5 trial coated s mponents 3 compatibil ff-road tires SA marked r bleed valv speed mot up training	(120 cSt max onitor & clean mpatibility m 5" caster steel) 304 or higher ity modificati s for rugged e starter enclose re or frequency	<) oil indica nodificati stainless on environm ure for Ca control	tor light on s steel ent nada
Media Selection	G8 C 05M 1M 3M 6L 10M ⁷ 16M 25M VTN	$\begin{array}{c} \beta 0.9_{[c]} \\ \beta 3_{[c]} \\ \beta 3_{[c]} \\ \beta 5_{[c]} \\ \beta 7_{[c]} \\ \beta 7_{[c]} \\ \beta 12_{[c]} \\ \beta 12_{[c]} \\ \beta 22_{[c]} \\ \end{array}$	S ≥ 4000 4000 4000 4000 4000 4000 4000	articulato in	G8 [3A 6A 10A ⁷ 25A	Dualglas $\beta 5_{[c]} \ge 2$ $\beta 7_{[c]} \ge 2$ $\beta 12_{[c]} \ge 2$ $\beta 22_{[c]} \ge 2$	ss + wa 4000 4000 4000 4000	iter r	emoval	Stainless 25W 25µ r 40W 40µ r 74W 74µ r 149W 149µ	wire mesh nominal nominal nominal nominal		
Seals	B V E-WS	Nitrile (Fluoroc EPR sea	p _[C] ≥ 4000 p Buna) carbon als + stainle	ess steel sup	port m	esh	оп ру-р		ci anu water re	anioval mec	11.0		
¹ Nominal flow rates at 60	Hz motor	speeds.											

²Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length code 18 or 36. Length codes 16 and 39 only compatible with HP8314. ³When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

With exception to cast iron gear pump.

⁶When selected, front casters of unit will be replaced with stationary feet. ⁷For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A. ⁸Only available on HP107 series elements. Flow rate should not exceed 16 gpm (60 lpm) for HP107L36-VTM710* elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

HS Heater Skids

Designed to achieve target ISO Codes and safely heat hydraulic and lube oils, the HS is a fully self-contained heating and filtration solution ideal for service applications, mass fluid transfers, and preheating systems before they come online.

Completely customizable for hydraulic fluids and high viscosity lubrication oils up to ISO VG 680.

More than your standard heater skid.

Whether you're performing a high velocity flush or preheating your system before it comes online, knowing your fluids are clean is the first step in extending your system and components' lifespans. HS heater skids come standard with properly positioned sample ports both up and downstream of the filter so you get consistently accurate readings and the knowledge that your system is operating as efficiently as possible.

Rock solid from the ground up.

Standard carbon steel spill retention pans with fork guides provide a sturdy base to contain everything you need together in a single package. Add the 6" caster option for increased mobility or even select options for CE or CUL markings to meet required safety standards.

You can't beat the heat.

With no direct contact with the heating element, your fluid will safely and quickly get up to temperature without the risk of burning. The programmable temperature control and integral no-flow switch prevent oil damage and allow you to heat your fluids at your own pace. And what's more: all this comes standard on every HS.

Take control of your systems.

Smart relay enabled controls make the HS series heater skids easy to operate with just the push of a button. Take it one step further and select the optional PLC touch screen and make accessing real time data as easy as using that smartphone of yours.

Filtration starts with the filter.

Within the housing on every HS is a powerful tool to help you get the most of your system and protect your critical components from particulate erosion. Media options down to $\beta \beta_{[C]} \ge 4000$ on the oversized filter element deliver lower ISO Codes over longer periods of time, letting you clean your new or in use oil to ensure long gear and bearing life.

Fits like a glove.

Designed and built specifically to meet your system's needs, HS heater skids can be completely customized so you get the powerful heating and filtration you need for that mass fluid transfer along with all the options you want to make the job easier than ever.

⁷⁶ HS Specifications

Dimensions	Consult factory with mod	lel number for dimensions an	d connection sizes.			
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)			
Materials of Construction	Housing Carbon steel with industrial coating	Tray Carbon steel with industrial coating	Plumbing Carbon steel with industrial coating	Heater Aluminum low watt density fin tube		
Electric Motor	TEFC with overload prote	ection				
Pump	Cast iron, positive displa	cement gear pump with interr	nal relief. Maximum pressure on pu	ump inlet 15 psi (1 bar).		
Pump Relief Setting	85 psi (5.86 bar)					
Media Description	M G8 Dualglass, our latest g rated, high performance hydraulic & lubrication fl	generation of DFE glass media for all uids. $βx_{[c]} \ge 4000$	W Stainless steel wire mesh m	edia $\beta x_{[c]} \ge 2$ ($\beta x \ge 2$)		
Replacement Elements	To determine replace Element Type Code LF7 LF8	eplacement elements, use corresponding codes from your equipment part num ferror Filter Element Part Number Example HP107L[Length Code] – [Media Selection Code][Seal Code] HP107L36–25MV HP8314L[Length Code] – [Media Selection Code][Seal Code] HP8314L16–12MB				
Fluid Compatibility	Petroleum and mineral b for compatibility with flue fluid (S9) compatibility se	ased fluids (standard). For spe orocarbon seal option. For ph elect fluid compatibility from s	ecified synthetics contact factory osphate ester (P9) or skydrol special options.			
Filter Sizing Guidelines	See LF filter sizing guidel	ines				

HS Part Number Builder

HS	Powe	er Option Element Type	Media Selection	Seals	Heat Capacity]-	Special Options
Flow Rate ¹	3 5 10 15	3 gpm (11.4 lpm) 5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 15 gpm (56.8 lpm)			20 30 45 60)) 5)	20 gpm (75.7 lpm) 30 gpm (114 lpm) 45 gpm (170 lpm) 60 gpm (225 lpm)
Power Options	60 F E3 23 46 57	z 230 V ac, 1P ² 230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P			5) E2 38 41	0 H 2 2 3 1	z 220 V ac, 1P ² 220 V ac, 3P 380 V ac, 3P 415 V ac, 3P
Element Type	LF7 LF8 X	LF housing with HP LF housing with HP No filter housing	107L36 filter 8314L39 filter	coreless elem r coreless eler	ent with inte nent with int	gra egr	l element 50 psid (3.4 bard) bypass al post 50 psid (3.4 bard) bypass
Media Selection	G8 [1M 3M 6L 10M ³ 16M 25M	$\begin{array}{l} \beta 3_{ C } \geq 4000 \\ \beta 5_{ C } \geq 4000 \\ \beta 5_{ C } \geq 4000 \\ \beta 7_{ C } \geq 4000 \\ \beta 12_{ C } \geq 4000 \\ \beta 12_{ C } \geq 4000 \\ \beta 17_{ C } \geq 4000 \\ \beta 22_{ C } \geq 4000 \end{array}$			S 25 40 74 14	tai 5W 5W 1W 19W	nless wire mesh 25µ nominal 40µ nominal 74µ nominal 749µ nominal
Seals	B V	Nitrile (Buna) Fluorocarbon					
Heat Capacity	4 9 12 24	1 x 4.5 kw heater 1 x 9 kw heater 1 x 12 kw heater 2 x 12 kw heaters			36 48 64	6 8 4	3 x 12 kw heaters 4 x 12 kw heaters 4 x 16 kw heaters
Special Options	8 B C D J M O	8" solid steel wheel Basket strainer CE marked for machi High filter element Δ Individual heater sele Discharge line visual On-board PM-1 partie	caster upgra inery safety d P indicator lig ector switch flow meter cle monitor	ade irective 2006/4 ht	Ps S 2/EC Ss T U V Y	9 ⁴ 9 ⁵	Phosphate ester fluid compatibility modification 304 stainless steel filter vessels Skydrol fluid compatibility modification Hose kit (suction/return hoses & wands) 50' (13 m) electrical cord (no plug) Inlet control valve N/C solenoid VFD variable speed motor frequency control

¹Nominal flow rates at 60 Hz motor speeds.

²Option only available when coupled with 4 kw heater option and 3 or 5 gpm max flow rate unit.

For elements HP8314, use 12M for media code in place of 10M. ⁴When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ⁵When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Diesel Contamination Types, Removal & Prevention

There are three main types of contamination related to Diesel fuels which can be introduced at any and all stages of the supply chain. To protect your systems and components, these contaminants must be removed prior to introduction into your system or you risk exposing your fuel injectors, fuel pumps, and every part of your system to catastrophic wear and premature failure. When today's high pressure combustion engines fail,

contamination is typically to blame. Hard particles, water and microbial growth are the primary contamination culprits that must be removed from diesel fuel to prevent fuel injector and pump failure and achieve trouble free operation.

Dirt & Particulate

Ultra fine particles at higher pressures in today's diesel engines can be a major source of fuel injector and pump failures, component wear, and loss of efficiency across entire systems. When particles get jammed inside a metal surface, it cuts a groove as it passes in a process known as scoring. Scoring can be a source of internally generated contamination and cause ISO Codes to increase, leading to the further degradation of system components.

Water

While all diesels contain water to some degree, it is crucial to prevent free water from reaching modern fuel systems as recommended by manufacturers and to prevent both direct and indirect damage caused by water. Water contamination in USLD diesel fuels leads to accelerated microbial growth (more on that below) and contributes to combustion engine failure and fuel efficiency loss. It can also cause the formation of rust, component corrosion and abrasion, etching, cavitation, and can even freeze in cold temperatures.

Microbial

With free water present in diesel fuels, microbial organisms can flourish to form slimes and sludge (soft solids) that clog fuel delivery systems and filters. If microbial growth is prevalent enough, it can even lead to high acidity which corrodes fuel systems and storage tanks, further exacerbating fuel degradation and increasing the likelihood of fuel oxidation. By removing water from diesel fuels, you alter the environment to discourage microbial growths and keep your system operating at peak efficiencies.

Diesel Contamination Solutions Prioritize Diesel Filtration

The first priority when it comes to fuel filtration is to remove the dirt. Expose your engine to dirty fuel and you risk your on-board particulate filter and fuel/water separators becoming clogged, giving you equipment alarms, damage, failures, and a massive headache. All that productivity you've had the last quarter? Kiss that goodbye.

The most effective and efficient way to clean up diesel is to filter remove particulate with high efficiency media filter elements then come in after to remove the water. With effective particulate contamination upstream, coalesce technology, which is featured in all of the systems listed below, removes all free and emulsified water down to saturation point in a single pass. Lucky for you, our diesel systems combine unmatched particulate filtration and water removal into one system to let you focus on the job at hand and leave worrying about contamination behind. Whereas hydraulic and lube systems are able to constantly recirc fluids using off-line kidney loops, diesel fuel applications consume fluids – meaning the best option is to condition the fuel is in transit to and from storage tanks, day tanks, service trucks, or as it is dispensed from a service truck or to a fuel rail. Those transition points are the optimal time in which contamination can enter diesel fuels. Ideally, implementing filtration at each step of the way and preventing possible sources of ingression will help rid your fuels of contamination and leave your equipment running to at the highest efficiencies.

COD Diesel Conditioning Systems

Remove water and particulate to extend fuel injector life and increase combustion engine fuel efficiency.

Ideal for large mining and construction fueling depots, diesel fueled turbines, backup generators, and smaller day tank dispensing or on-board fueling truck applications. With options for adding non-powered units to existing fuel dispensing lines, there's a perfect COD for all of your diesel applications.

Filtration starts with the filter(s).

COD combines high efficiency single pass particulate and water removal to ensure that your fuel is always in spec, eliminating wear related injector failures. Achieve cleanliness below the 18/16/13 ISO Code limit required by engine manufacturers with $\beta 5_{cl} > 4000$ media elements and extend the life of on-board fuel filters that plug and cause replacement downtime that can shut down your entire mining group.

Redefining standard filtration.

For high pressure injectors, water is one of the worst forms of contamination. The solution for your water contamination lies in COD's 100% synthetic coalesce/separator elements that remove all free and emulsified water down to 50 ppm. Your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Increase fuel efficiency, lower emissions.

Cleaner fuel runs more efficiently and with lower emissions, yielding better injector performance and life and can even lead to lower fuel usage – which translates to bottom line profitability and a drastically lower environmental footprint. Monitor your fuels' condition with properly positioned sample ports before the pre-filter and after the coalesce stage and always know how your filtration is performing.

Take control of your systems.

Smart relay and auto water drain make COD a 24/7 unattended, easy-to-operate solution that functions as an in-line contamination barrier for every drop of fuel that goes into your engines. Optional PLC touchscreen enables custom programming so your COD can purify backup fuel tanks on your schedule and even data log ISO Codes and saturation levels so you know your fuel is clean and reliable when you're on and off the clock.

Integrated results.

For fuel delivery systems already in place, the CODX non-powered skids are the perfect addition for seamless integration and contain all the contamination removal technology of powered COD units. Ideal for fueling depots, bulk fuel deliveries, upgrading common fuel rails, on-board engine and marine applications.

Built to exceed your expectations.

Flexible dimension and process arrangement are available with every COD so you get the perfect contamination solution for your fuel delivery system. Even choose from explosion proof models and color coordinate to fit perfectly with your existing safety standards for the ultimate system in diesel conditioning.

COD Specifications

Model	COD5-10-30	COD60-100		COD200	COD300-4	00	COD500-600
Height ¹	72" (183 cm)	80" (203 cm)		90" (229 cm)	90" (229 cr	n)	90" (229 cm)
Length ¹	48" (122 cm) 72" (183 cm)			84" (213 cm)	84" (213 cm) 84" (213 cm)		96" (244 cm)
Width ¹	42" (107 cm) 36" (92 cm)			48" (122 cm)	60" (152 cr	n)	60" (152 cm)
Weight ¹	1200 lbs (454 kg)	2000 lbs (907 kg)		2400 lbs (1089 kg)	3500 lbs (1	588 kg)	4200 lbs (1905 kg)
Inlet ²	COD5-10: 1" (2.5 cm) COD30: 1½" (3.8 cm)	2" (5.1 cm)		3" (7.6 cm)	4" (10.2 cm)	6" (15.2 cm)
Outlet ²	COD5-10: 1" (2.5 cm) COD30: 1½" (3.8 cm)	1½" (3.8 cm) 2" (5.1 cm)		3" (7.6 cm)	4" (10.2 cm)	6" (15.2 cm)
Motor Size	1-5 hp	7.5-10 hp		20 hp	30 hp		40 hp
Pre-Filter Elements	1 - 18" Pre Filter	1		3	4		4
Coalesce Elements	1 x HP538L38-CSB ³	2 x HP731L39-CB		3 x HP731L39-CB	6 x HP731I	.39-CB	8 x HP731L39-CB
Separator/ Polish Elements	(combination element)	1 x HP582L30-S25	5MB	2 x HP582L30-S25MB	3 x HP582I	_30-S25MB	5 x HP582L30-S25MB
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)	4 (4	Ambie 10°F to 4°C to	nt Temperature 104°F 40°C)			
Materials of Construction	Housings Carbon steel with indus	Fitrial coating C	rame Tarbon	steel with industrial coa	Tr ating Ca	ay rbon steel w	ith industrial coating
Electric Motor	TEFC motors with overl	oad protection					
Pump	Cast iron, positive displ on pump inlet 15 psi (1	acement gear pum bar). Consult facto	p with ry for l	internal relief. Maximur higher pressures.	n pressure		
Pump Relief	85-100 psi adjustable						
Media Description	M G8 Dualglass, our latest of DFE rated, high perfo glass media for all hydr lubrication fluids. βx _[C] ≥	c generation 1 formance aulic & e 4000	Coales 00% s	ce ynthetic fiber media	Se TE	parator FLON® coate	d screen (water barrier)
Fluid Compatibility	Petroleum based fuels,	#2 Diesel (standard	d) and	jet fuel. For other fuel o	ptions conta	ct factory.	
Hazardous Environment Options	Select special option X f standards requirement	or explosion proof s such as Class, Div	unit. (rision,	Consult factory for exact and Zone.			

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²Female pipe port. ³HP538L38-CSV element combines coalesce and separator element functions into a single element.

TEFLON® is a registered trademark of DuPont.

COD Part Number Builder

COD			_			
	Flow Rate	[P	ower Options Seal	Special Options		
Flow Rat	ce ¹	5 10 30 60 100 200 300 400 500 600	5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 30 gpm (114 lpm) 60 gpm (225 lpm) 100 gpm (379 lpm) 200 gpm (757 lpm) 300 gpm (1135 lpm) 400 gpm (1514 lpm) 500 gpm (1892 lpm) 600 gpm (2271 lpm)			
Power Options		60 12 E2 46 57	Hz 120 V ac, 1P 230 V ac, 1P 460 V ac, 3P 575 V ac, 3P	50 Hz E1 12 E3 22 32 32 38 38 41 4 52 52	20 V ac, 1P 30 V ac, 1P 20 V ac, 3P 80 V ac, 3P 15 V ac, 3P 25 V ac, 3P	Non-Powered X ² Non-powered COD: No pump-motor combination or electrical controls.
Seals		B V	Nitrile (Buna) Fluorocarbon			
Special Options		8 A ³ C K L M O P T ³ U X Y	8" (20 cm) solid whee Auto water drain (ma Adjustable coalesce CE marked for machi Sight flow indicator (n Lifting eye kit Water discharge tota On-board PM-1 parti PLC touch screen con Hose kit (suction & re 50' (15 m) electrical co Explosion proof - mu VFD variable speed r	el upgrade anual drain included vessel bypass loop inery safety directive wheel type) lizing meter cle monitor & clean ntrol (does not inclue eturn hoses + wands ord with no plug st specify standards notor frequency con) e 2006/42/EC oil indicator light de VFD) s) s required itrol	ht

¹Nominal flow rates at 60 Hz motor speeds.

²Suitable for adding to existing fuel delivery system with existing pressure and flow. Auto water drain option is mechanical.

³Recommended option. ⁴Standard option.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Donaldson.

83

FSLCOD Marine and Industrial Diesel Filtration Systems

Remove water and particulate to extend fuel injector life and increase combustion engine fuel efficiency.

Ideal for permanent installation on-board sea vessels and diesel applications requiring compact size restrictions.

Remove contaminants, protect equipment.

FSLCOD combines high efficiency single pass particulate and water removal to ensure that your fuel is always in spec, eliminating premature injector failures and downtime.

Elements that go beyond industry standard.

With DFE rated particulate filters and 100% synthetic coalesce/separator elements that remove all free and emulsified water down to 50 ppm, your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Small has never been bigger.

Coming in at only 1 ft² (30 cm²) of floor space and 34" (86 cm) tall, the FSLCOD is engineered to provide maximum efficiency in minimal space.

Smarter filtration.

Designed for 24/7 unattended operation, FSLCODs with auto water drain technologies, available electrically or mechanically powered, provide you with the safety and security to know your diesel is clean and dry even when you're off the clock.

Increase fuel efficiency, lower emissions.

Cleaner fuel runs more efficiently and with lower emissions, yielding better injector performance and life and leading to lower fuel usage, translating to bottom line profitability and a drastically lower environmental footprint. Monitor your fuels' condition with properly positioned sample ports before the pre-filter and after the coalesce stage and always know how your filtration is performing.

No detail overlooked.

From the cast iron gear pump with internal relief to the space saving design, every component of the FSLCOD is designed to provide you with the highest quality filtration and integrate seamlessly into your systems. So whether you've got a single vessel or an entire fleet, you can rest assured that your diesel is clean and dry.

FSLCOD Specifications

Dimensions ¹	Height 34" (86 cm)	Width 30″ (76 cm)	Depth 25″ (64 cm)	Weight 285 lbs (129 kg)
Connections	Inlet FSLCOD5-10: 1" 3-way diverti FSLCOD20: 1½" female NPT	ng ball valve	Outlet 1" female NPT ¼" female NPT	
Element Configuration	Pre-filter HP60L13-3MV		Main Filter FSLCOD20: HP5	38L38-CSV
Seals	Fluorocarbon			
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temper 40°F to 104°F (4°C to 40°C)	rature
Materials of Construction	Housings Carbon steel with industrial co	pating		
Electric Motor	TEFC, 56-184 frame 0.5-2 hp, 1450-1750 RPM			
Motor Starter	MSP (motor starter/protector)	in an IP65, aluminum	enclosure with short circ	uit and overload protection.
Pump	Cast iron, positive displaceme on pump inlet 15 psi (1 bar). C	ent gear pump with in Consult factory for hig	ternal relief. Maximum pr her pressures.	essure
Pump Bypass	Full bypass at 150 psi (10 bar)	2		
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³			
Media Description	M G8 Dualglass, our latest gener of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 4000$	Coalesce ration 100% syntl ce k	hetic fiber media	Separator TEFLON [®] coated screen (water barrier)
Fluid Compatibility	Petroleum based fuels, #2 Die	sel (standard). For oth	ner fuel options contact fa	ctory.
Hazardous Environment Options	Select pneumatic powered un Class 1, Division 1, Group C+E Proof option (X) selected, no	it (Power Option 00) o D. Call for IEC, Atex or electrical cord or cor	or explosion proof NEC Ar other requirements. If Ex d reel will be included.	ticle 501, plosion

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

³Air consumption values are estimated maximums and will vary with regulator setting. TEFLON[®] is a registered trademark of DuPont

FSLCOD Part Number Builder

FSLCOD	Flow Rat	te Indicator	Power Options	Special Options		
Flow Rate ¹	5 5 9 10 10 20 ² 20	gpm (18.9 lpm)) gpm (37.9 lpm)) gpm (75.7 lpm)				
∆P Indicator ³	D 22 E 22	2 psid visual gaug 2 psid visual gaug	e + electric switcl e	h		
Power Options Contact factory for options not listed	60 Hz, 12 12 22 20 23 20 46 46 57 57 Explos X_ Ac	1750 RPM 20 V ac, 1P 38-230 V ac, 1P 38-230 V ac, 3P 50-480 V ac, 3P 75 V ac, 3P 5 V ac, 3P	50 11 21 40 52 Ass 1, Divisior ver option listed	Hz, 1450 RPM 110 V ac, 1P 220 V ac, 1P 380-440 V ac, 3P 525 V ac, 3P 1, Group C+D pe above. Not available of	Pne 00 er NEC 501 – Read with (00) Pneumatic O	Pneumatic Pneumatically driven air motor & PD pump. FRL & flow meter included. y for outdoor use ption.
Special Options	A1 ⁴ EI B Cc C CE D Hi E 100 F Fill G Sp J Acc K Hf L Hi O ⁵ Of U CL W Acc Z Of	ectrically powered omplete filter byp E marked for mad gh filter ΔP auto s 0 mesh cast iron liter element ΔP ga bill retention pan dd pressure gauge P75L8-149W Spin- gh filter element a tal system flow m n-board PM-1 par I wetted compone JL and/or CSA ma utomatic air bleed n site start-up trai	d automatic wate ass line hinery safety dires shutdown basket strainer auge with tattle ta with fork guides between pump On suction strain ΔP indicator light heter (120 cSt ma ticle monitor & cl ents 303 or highe arked starter encl valve ning	er drain ective 2006/42/EC ale follower needle (industrial coated stee & filter assembly ner t t ax) lean oil indicator light er stainless steel losure for Canada	əl) :	

¹Nominal flow rates at 60 Hz motor speeds. ²20 gpm machine utilizes 36" vessel.

³Coalesce filter only. Particulate filter housing is equipped with pop-up differential indicator.

*PM-1 will not function properly in the presence of free or emulsified water at or above saturation point. If selected, PM-1 is installed downstream of the filtration.

⁶With exception to cast iron gear pump.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

87

88

FCLCOD Diesel Conditioning Filter Cart

Remove water and particulate to extend fuel injector life and increase combustion engine fuel efficiency.

Ideal for service oriented stand by diesel tanks and marine applications.

Take control of your systems.

FCLCOD filter carts are constructed to be powerful, dependable, and easy to use. Whether you've got multiple diesel reservoirs or simply need your filtration on the move, conditioning your fuels has never been easier. Add automatic water drain and your FCLCOD becomes a powerhouse that does the work for you.

Filtration starts with the filter(s).

FCLCOD combines high efficiency single pass particulate and water removal to ensure that your fuel is always in spec, eliminating premature injector failures and downtime. With DFE rated particulate filters and 100% synthetic coalesce/ separator elements that remove all free and emulsified water down to 50 ppm, your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Never stops working.

Designed for 24/7 unattended operation, FCLCODs with auto water drain technologies, available electrically or mechanically powered, provide you with the safety and security to know your diesel is clean and dry even when you're off the clock.

Unmatched on the move.

Non-shredding wheels, optional off-road heavy duty tires and easy to maneuver cart design with ergonomic handle mean you get powerful filtration exactly when and where you need it.

Increase fuel efficiency, lower emissions.

Cleaner fuel runs more efficiently and with lower emissions, yielding better injector performance and life and can even lead to lower fuel usage which translates to bottom line profitability and a drastically lower environmental footprint. Monitor your fuel's condition with properly positioned sample ports before the pre-filter and after the coalesce stage and always know how your filtration is performing.

Completely customizable.

Flexible dimension and process arrangement are available with every FCLCOD so you get the perfect contamination solution for your fuel delivery system. Even choose from explosion proof models and color coordinate to fit perfectly with your existing safety standards for the ultimate mobile system in diesel conditioning.

FCLCOD Specifications

Dimensions ¹	Height 62″ (158 cm)	Width 30.5″	Depth 29″ (74 cm)	Weight 379 lbs (172 kg)
Connections	Inlet FCLCOD5-FCLCOD10: 1" male JIC (37° flare) FCLCOD20: 1½" male JI	O F(m C (37° flare) F(utlet CLCOD5-FCLCOD10: 1″ nale JIC (37° flare) CLCOD20: 1¼″ male JIC (37° flare)	Hoses FCLCOD5-FCLCOD10: 1" x 10 ft (2.4 m) FCLCOD20: 1¼" x 10 ft (2.4 m)
Element Configuration	Pre-filter HP110NL11-3MV		Main Filter HP538L38-CSV	
Seals	Fluorocarbon			
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temper 40°F to 104°F (4°C to 40°C)	ature
Materials of Construction	Housings Carbon steel with indust	rial coating R	oses einforced synthetic	Wands Stainless steel
Electric Motor	TEFC, 56-145 frame 0.5-2 hp, 1450-1750 RPN	I		
Motor Starter	MSP (motor starter/prot	ector) in an IP65, a	luminum enclosure with short circu	it and overload protection.
Electric Connection	Voltages 230 V ac and und included. NEMA 5-15 plug Voltages over 230 V ac: 3	der, single phase: 3 g installed on Powe 35′ (11 m) loose co	5′ (11 m) retractable cord reel r Option 12. rd included.	
Pump	Cast iron, positive displa on pump inlet 15 psi (1 b	acement gear pum par). Consult facto	p with internal relief. Maximum pre ry for higher pressures.	essure
Pump Bypass	Full bypass at 150 psi (10) bar)²		
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³ 35' (11 m) retractable air	hose included wh	en pneumatic option selected. Repl	aces 35′ (11m) electric cord reel.
Media Description	M G8 Dualglass, our latest of DFE rated, high perfo glass media for all hydra lubrication fluids. $βx_{ic} \ge$	C generation 10 rmance aulic & 4000	oalesce 00% synthetic fiber media	Separator TEFLON [®] coated screen (water barrier)
Fluid Compatibility	Petroleum based fuels, #	‡2 Diesel (standard	d). For other fuel options contact fac	tory.
Hazardous Environment Options	Select pneumatic power Class 1, Division 1, Grou Proof option (X) select	ed unit (Power Op p C+D. Call for IEC ed, no electrical cc	tion 00) or explosion proof NEC Art C, Atex or other requirements. If Exp ord or cord reel will be included.	icle 501, olosion

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²10 GPM pump is rated for intermittent duty only at pressures above 100 psi. Continual operation with dual clogged filters resulting in operating pressures over 100 psi will reduce pump life and/or cause premature pump failure.

³Air consumption values are estimated maximums and will vary with regulator setting. TEFLON® is a registered trademark of DuPont.

ξx **C E** (nec) ւ(Սլ

FCLCOD Part Number Builder

FCLCOD	Flow Rate Indicator Power Options Hose Connection Special Options
Flow Rate ¹	5 5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 20 gpm (75.7 lpm)
ΔP Indicator ²	D22 psid visual gauge + electric switchE22 psid visual gauge
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air 22 208-230 V ac, 1P 21 220 V ac, 1P motor & PD pump. FRL & 23 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P flow meter included.
Hose Connection	 Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option. G Female BSPP swivel hose ends, no wands S Female JIC swivel hose ends, no wands W Female JIC swivel hose ends, with wands
Special Options	 A1 Electrically powered automatic water drain B Complete filter bypass line C CE marked for machinery safety directive 2006/42/EC D High filter ΔP auto shutdown E 100 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle G Spill retention pan with fork guides (industrial coated steel) H1 10' (3 m) return line hose extension H2 20' (6 m) return line hose extension J Add pressure gauge between pump & filter assembly K HP75L8-149W Spin-On suction strainer L High filter element ΔP indicator light M Total system flow meter (120 cSt max) O³ On-board PM-1 particle monitor & clean oil indicator light R Spill retention pan with wheels (industrial coated steel) S⁴ All wetted components 303 or higher stainless steel T Foam filled off-road tires for rugged environment U CUL and/or CSA marked starter enclosure for Canada W Automatic air bleed valve Z On site start-up training

[.] 'Nominal flow rates at 60 Hz motor speeds. ²Coalesce filter only. Particulate filter housing is equipped with sliding differential indicator.

³PM-1 will not function properly in the presence of free or emulsified water at or above saturation point. If selected, PM-1 is installed downstream of the filtration. ⁴With exception to cast iron gear pump.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

CSD Diesel Coalesce Non-Powered Filtration System

Remove water to extend fuel injector life and increase combustion fuel efficiency. The CSD is designed for direct integration into fuel delivery systems with pump flow and pressure already in place for easy, streamlined water removal through your existing system. Using high efficiency coalesce and separating media, the CSD will keep diesel free from water contamination down to 50 ppm in a single pass.

Ideal for construction fueling depots, tank farms and common fuel rail applications.

Protect your uptime.

By removing water from your diesel systems, you're providing the best environment for your equipment to operate efficiently and helping to prevent breakdowns and damage, saving you time and effort. CSD systems rapidly remove water down to saturation point, protecting your systems and letting you focus on the job at hand.

Media matters.

Cellulose media is known to break down under high water content, resulting in media migration and loss of coalescence efficiency. CSD's 100% synthetic coalesce and separator elements contain no cellulose and feature a pleated synthetic configuration to maximize surface area and ensure your fuel rail and high pressure injectors will be protected and running more efficiently than ever.

Don't quit your day job.

Designed for 24/7 unattended operation, CSDs with auto water drain technologies, available mechanically or electrically powered, provide you with the safety and security to know your diesel is clean and dry so you can forget worrying about your filtration and focus on the job at hand.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. Knowing your diesel is clean is the first step in prolonging the life of your fuel injectors and critical components. CSD series housings come standard with easy-to-access sample ports in their proper positions so you can always know you're putting clean, dry diesel into your systems.

Combined filtration, double the power.

A properly sized Donaldson Hy-Pro CSD plus Donaldson Hy-Pro high efficiency particulate filtration will deliver diesel fuel cleanliness codes of 15/13/10 and better while maintaining water levels at 50 ppm. Pair your CSD with an LF housing in-line on your system and rest assured knowing your fuel injectors are protected.

Integrated results.

Installing CSDs in-line on your current system means you get powerful filtration exactly where you need it – directly upstream of your critical components. With standard models ranging up to 600 gpm, your diesel will be dry and components protected whether you're on a small diesel tank farm or a massive diesel fired turbine.

CSD Specifications

Model	CSD30	CSD120	CSD200	CSD400	CSD600	
Max Flow Rate	30 gpm	120 gpm	200 gpm	400 gpm	600 gpm	
	(114 lpm)	(454 lpm)	(757 lpm)	(1514 lpm)	(2271 lpm)	
Weight ¹	164 lbs	319 lbs	546 lbs	1097 lbs	1155 lbs	
	(74 kg)	(177 kg)	(248 kg)	(498 kg)	(524 kg)	
Height ¹	62″	74"	82″	82″	82″	
	(158 cm)	(188 cm)	(209 cm)	(209 cm)	(209 cm)	
Width ¹	22″	32″	36″	48″	48″	
	(56 cm)	(82 cm)	(92 cm)	(122 cm)	(122 cm)	
Length ¹	22″	27″	32″	40″	40″	
	(56 cm)	(69 cm)	(82 cm)	(102 cm)	(102 cm)	
Coalesce Elements	1 x HP538L38-CSV ²	2 x HP731L39-CV	3 x HP731L39-CV	6 x HP731L39-CV	8 x HP731L39-CV	
Separator/ Polish Elements	(combination element)	1 x HP582L30-S25MV	2 x HP582L30-S25MV	3 x HP582L30-S25MV	5 x HP582L30-S25MV	
Materials of	Housing	Tray	coated steel	Hoses		
Construction	Industrial coated steel	Industrial d		Reinforced synthetic		
Media Description	Coalesce 100% synthetic fiber me	edia	Separator TEFLON® c	coated screen (water bar	rier)	
Fluid Compatibility	Petroleum based fuels,	#2 Diesel (standard). Fo	r other fuel options cont	act factory.		

¹Weights and dimensions are approximations taken from base model and will vary according to options chosen. ²HP538L38-CSV element combines coalesce and separator element functions into a single element.

TEFLON® is a registered trademark of DuPont.

CSD Part Number Builder

Flow Rate¹

120120 gpm (454 lpm)200200 gpm (757 lpm)

30

400 400 gpm (1514 lpm)

30 gpm (114 lpm)

600 600 gpm (2271 lpm)

Port Connections	B2 C2 C3 D2 D3 D4 D5 D6 D8 D10 F2 F3 F4 F6 F8 F10 F12 N2	Connection Type 2" BSPP 2" SAE Code 61 flange 3" SAE Code 61 flange DN50 DIN flange DN65 DIN flange DN100 DIN flange DN125 DIN flange DN200 DIN flange DN250 DIN flange 2" ANSI flange 3" ANSI flange 6" ANSI flange 10" ANSI flange 12" ANSI flange 2" ANSI flange	CSD Series Availability 30-120 30-120 30-120 30-120 200-400 200-400 200-600 200-600 30-120 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 200-600 30-120
Seals	B V	Nitrile (Buna) ¹ Fluorocarbon	
Special Options	AX AE AE1 AE2 AE3 B M S T	Auto water drain - mechanical Auto water drain - electrically of Auto air bleed valve ⁴ Water discharge totalizing meter All wetted components 303 or Optional drip tray + fork life gu	(no electrical) ² operated solenoid valve (120 V ac, 1P, 60Hz ³) operated solenoid valve (110 V ac, 1P, 50Hz ³) operated solenoid valve (230 V ac, 1P, 60Hz ³) operated solenoid valve (220 V ac, 1P, 50Hz ³) er higher stainless steel ides

¹Not suitable for bio diesel.

Suitable for adding to existing fuel delivery system with existing pressure and flow. Auto water drain option is mechanical.

³Requires power supply. ⁴Recommended options.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

What is Varnish?

Varnish formation

Lubricant varnish is defined per ASTM D02.C01 WK27308 as a thin, hard, lustrous, oil-insoluble deposit, composed primarily of organic residue, and most readily definable by color intensity. It is not easily removed by wiping with a clean, dry, soft, lint-free wiping material and is resistant to saturated (light hydrocarbon) solvents. Its color may vary, but it usually appears in gray, brown, or amber hues. Varnish begins its life as a soluble degradation product before converting to an insoluble particulate form. The process responsible for the deposition of particulate varnish is reversible.

Lubricant solvency

Under normal operating conditions, turbine lubricants are subjected to oxidation, which produces polar molecules, the varnish precursors, from lubricant mineral-oil base stocks. These polar species represent the starting point of the varnish life cycle. As a result, lubricants in service are a complex combination of base stocks, additives, and contaminants.

A lubricant's solvency is defined as its ability to dissolve these distinct components. Everything in the oil has a finite solubility which is affected by numerous variables (molecular polarity, contaminant levels, temperature, etc). When the solubility of a molecule is low, the lubricant cannot dissolve those components which then release from the fluid to form deposits. However, when the solubility of a molecule is high, the lubricant will have a high capacity to dissolve it, avoiding the formation of varnish deposits.

Contaminant levels

As the oil degrades and oxidation products accumulate, the solvency of the fluid decreases accordingly. Beyond the saturation point, the fluid can no longer dissolve additional varnish precursors formed by continuing oxidation and varnish will begin to precipitate from the solution.

Temperature

Oil temperature directly affects the solubilities of all the species dissolved within it. As temperature decreases, so too does the solubility of varnish and its precursors. Because metals are more polar than the lubricant's base stock, the precipitated polar varnishes prefer to adhere to the metal and form potentially damaging deposits. When the level of varnish precursors in a lubricant is at (or near) the fluid's saturation point, varnishing in cooler regions is very likely to occur.

The images below depict four different formations of varnish as they can appear in different types and locations throughout a lube system. While this list is not comprehensive, the types listed below are among the most commonly seen.

Varnish can be soft and gooey (Sludge)

brittle (Lacquer)

Varnish can be hard and

Varnish on reservoir ceiling (Stalactites)

Varnish deposits on reservoir floor (Plated)

Testing for varnish

Varnishing can cause costly turbine downtime. An easy solution to combat this is to determine the lubricant's potential for varnish formation. Two of the most widely adopted techniques are QSA® (quantitative spectrophotometric analysis) and the standardized MPC (membrane patch colorimetry, ASTM 7843).

Both methods can produce results which vary significantly depending upon the length of time during which the oil sample was "aged." Indeed, longer sample aging periods produce higher MPC values, suggesting that degradation of lubricants continues in the sample bottle. For this reason, the ASTM MPC method suggests all samples be incubated at room temperature for 72 hours after being heated to $140^{\circ}F$ (60°C) for 24 hours. This well-defined and standardized aging time has provided inter-laboratory consistency and improved testing repeatability.

The Varnish Cycle

It all starts with oxidation.

Oxidation is an unavoidable chemical reaction between the lubricant base stock and oxygen present in the air surrounding it. Oxidation increases as the operating temperature rises, but the by-products remain dissolved.

When oil moves from hotter regions within the system to cooler ones, the fluid temperature decreases and these precursors begin a physical change to precipitate from solution in the form of soft particulates.

Once formed, varnish particles agglomerate and form deposits which preferentially coat metal surfaces within the reservoir and on components like valves. These deposits are often the cause of unit trips and fail-to-start conditions.

In most cases, however, once varnish deposits form, they can be reabsorbed into the fluid and broken down if the solvency of the lubricant increases.

The table below breaks down the stages in the process of varnish formation along with the approximate fluid color corresponding to each stage.

Oxidation	Oxidation is the root cause of the problem. It creates free radicals resulting in acids, alcohols, esters and lactones. Anti-oxidant (A0) additives are designed to neutralize the products of oxidation. As oxidation occurs, the phenol and amine additives are depleted. The products of oxidation become the building blocks of varnish.	
Polymerization	Polymerization occurs as the by-products of oxidation and additive reactions combine to create longer chain molecules with higher molecular weight. These molecules have lower solubility and are polarized. The rate of molecular polymerization is a function of temperature (as a catalyst) and the concentration of oxidation by-products (free radicals).	dition
Solvency	Solvency describes fluid's capacity to hold the varnish producing molecules in solution (dissolved). Solubility is directly affected by temperature. As more oxidation by-products are generated, the fluid approaches its solubility saturation point beyond which no additional polymerized molecules can be held in solution.	d Con
Precipitation	Precipitation occurs once the solubility threshold (saturation point) has been crossed or if there is a drop in temperature which reduces the solubility of the fluid. As additional oxidation by-products (free radicals) are generated, they become insoluble and precipitate out and are free to form varnish deposits.	al Flui
Agglomeration	Agglomeration begins as insoluble sub-micron soft particles (~0.08 micron) that have precipitated out of solution bond to form large particles (1.0 micron). These agglomerated soft particles remain insoluble, remain polarized, and maintain a higher molecular weight than the fluid itself.	lypica
Varnish Formation	Varnish forms as the polarized oxidation by-products come out of solution, agglomerate and collect on metal surfaces. The surfaces where varnish typically forms include cool zones, low flow and low clearance areas. Why? This is where solubility diminishes, precipitation starts and agglomeration goes on undisturbed. Deposit formation also occurs locally in the reservoir and on components where hot spots in the fluid or sparking lead to varnish, such as on reservoir walls and filter elements.	

Strategies to Combat Varnishing 98

There are two main types of varnish removal systems: those based upon the removal of suspended (insoluble) particles and those based upon the removal of soluble varnish and its precursors.

Anti-oxidant packages, generally consisting of phenols and amines, are usually added to the lubricant as a built-in varnish mitigation strategy. Anti-oxidants limit the rate of oxidative degradation and, therefore, delay varnishing. But these AO packages fail in that they cannot prevent it indefinitely. Although both phenols and amines have anti-oxidant activity on their own, they function more efficiently in concert with one another. While the specific identities and amounts of the anti-oxidants employed varies with different lubricant formulations, the mechanism by which they enhance fluid lifetime remains the same. AO levels deplete continuously which means the fluid needs to be replaced once all AO additives have been consumed.

Insoluble Varnish Removal

Charge agglomeration, electrostatic oil cleaning, or combinations of these techniques are advanced forms of particulate removal. These techniques remove fine particulates that are suspended within the fluid including insoluble varnish particles. However, these technologies are only helpful once the insoluble particles form. Soluble varnish and soluble varnish precursors are able to return to the turbine and become varnish deposits as seen on the components to the right.

Soluble Varnish Removal

Soluble Varnish Removal (SVR[™]) systems use specialized Ion Charge Bonding (ICB[™]) resins that contain billions of polar sites capable of adsorbing soluble varnish and its precursors. This adsorption relies on a preferential molecular interaction between the polar varnish molecules and the polar sites present within the resin. Just as insoluble byproducts prefer metal surfaces to being suspended in the fluid, soluble by-products prefer ICB resin than to remain dissolved within the fluid.

Conventional ion-exchange resins function by exchanging one chemical for another. ICB resins are engineered to adsorb the entire contaminant without returning any others to the fluid. A key benefit of the ICB adsorption principle is that harmful oxidation products can be removed at any operating temperature, meaning that SVR systems can be used continuously. The continuous removal of soluble varnish and its precursors ensures that degradation products do not accumulate in the lubricant, eliminating the risk of varnish formation during normal turbine shut down cycles. Moreover, the continuous removal of soluble varnish produces a lubricant with extremely high solvency.

Since the physical changes that resulted in the formation of insoluble varnish particles and deposits are reversible, the high solvency of the SVR treated lubricant forces insoluble varnish already present on turbine surfaces back into the soluble varnish form where they can be adsorbed and removed. With all the remaining oxidation by-products removed, the varnish formation cycle is completely stopped.

Varnish particles and deposits are created from reversible physical changes that begin with soluble oxidation products and end with insoluble deposits. For these changes to be reversible, the chemistry of the deposits has to be similar to the chemistry of the lubricant from which the deposits originated. Normally, once fluid solvency has been increased (by removing soluble varnish at normal operating temperature), deposits will simply dissolve back into the fluid and be removed.

hyprofiltration.com/

Varnish deposits on filter element (GE Frame 6B)

IGV valves and fuel control valves are typically the first problem components

Varnish on load gear (Frame 6)

Filter element

cross section

SupportTube)

Deposits,

(Lacquer Varnish

Deposits)

Varnish & Acid Scavenging Systems

99

100 Ideal for large frame turbines where mineral based lube oil and specified synthetics **SVR** Soluble Varnish are used. Prevent unit trip and fail-to-start conditions where a common reservoir is used for lube and hydraulic control circuits. ICB media technology treats oil on **Removal Systems** a molecular level, reversing the chemical process of varnish deposit formation, improving servo valve response time, protecting lube oil anti-oxidant additive packages, removing acids to improve oxidative stability, and improving oil demulsibility. High efficiency post filter removes particles to deliver low ISO Codes while extending the life of main bearing lube, pump discharge and servo pilot filters. 106 A total solution for varnish deposit removal and prevention in mineral **FSTO** based and specified synthetic compressor and small frame turbine lube oil **Turbine Oil Varnish** applications subject to varnish deposits in bearings, heat exchangers and control **Removal Systems** valves. ICB media technology treats lube oil on a molecular level, reversing the chemical process of varnish deposit formation, improving servo valve response time, protecting lube oil anti-oxidant additive package, removing acids to improve oxidative stability, and improving oil demulsibility. VTM postfilter media removes insoluble (suspended) oxidation by-products, water, and hard contamination to achieve incredibly low ISO Codes and clean lube oil. A dedicated solution for phosphate ester based fluids on turbine control, steel **FSA** 110 mill hydraulics and other high heat applications. ICB media removes acids formed Phosphate Ester in phosphate ester (hydrolysis) and dissolved metals leeched into the fluid from Varnish Removal Fuller's earth, D-earth and Selexsorb acid remediation technologies which lead Systems to gels, deposits and poor air release in FRFs. ICB also restores fluid resistivity and removes gels and deposits in control valves to improve servo valve response time. VTM mechanical filter element media reduces ISO Codes and extends pump discharge, servo pilot and last chance filter element life. TMRN, manages water to 300 ppm and prevents contamination from air ingression. Use FSAPE to avoid unit trip, expensive premature fluid replacement, flushes or bleed and feed routines. FSJL 114 Aeroderivative turbines suffer from contamination related variable geometry failures, bearing deposits and premature fluid replacement, all of which can be Aeroderivative caused by varnish. ICB media technology removes acids, molecular by-products, Jet Lube Varnish and varnish deposits that form during jet lube fluid degradation. TMRN, **Removal Systems** manages water to 300 ppm and prevents contamination from air ingression. VTM mechanical filter element media reduces ISO Codes and extends pump discharge, servo pilot and last chance filter element life. FSL is a total fluid management solution for aeroderivative turbine jet lube applications. ECR 118 The primary application for the ECR is the removal of sub-micron carbon particles that form as a result of micro dieseling in turbine EHC (electrohydraulic control) Electrostatic systems using phosphate ester based fluids. The presence of sub-micron carbon Contamination particles is evident by a general darkening of the fluid from its original amber **Removal Systems** color or by black patch color when patch weight analysis is performed. ISO fluid cleanliness codes might show very clean fluid when sub-micron carbon is present as it is below the threshold particle counting per ISO 11171. Sub-micron carbon can lead to deposits, low resistivity and poor air release properties. ECR is the most effective way to remove the sub-micron carbon particles. Ionic Charged Bonding (ICB) media is used to treat a range of fluids at the ICB 122 molecular level by removing contaminant molecules that form as a by-product Ionic Charged of oxidation and fluid degradation. The heavy weight molecules to be removed **Bonding Filter** are polar oxides, acids and other free radicals that result in deposit formation Elements (varnish) and are detrimental to fluid performance. ICB media is designed to selectively remove the contaminant without removing fluid additives. The use of ICB results in fluids that perform better, last longer and yield trouble-free operation for those who are responsible for maintaining them. We apply fluid specific ICB media that remove acids, dissolved metals and varnish while improving important fluid characteristics such as solubility, resistivity and demulsibility. VTM media configuration is a combination of technologies that mechanically VTM removes insoluble (suspended) oxidation by-products that form varnish Particulate, Water, deposits in additized AW hydraulic oils and EP gear lubricants. VTM adsorbs and Oxidation water and some polar molecules while removing particulate contamination **By-product** to $\beta 0.9_{|c|} > 4000$. Ideal for high heat hydraulic and gearbox lube applications Removal Media such as plastic injection molding, wind turbine, or coal mill applications. VTM is available in FSW, FSL, and FCL dedicated and portable off-line systems and is used in tandem with ICB media on FSTO, FSA, FSJL, and SVR solutions.

SVR[®] Lubricant Conditioning System

A complete recovery and maintenance solution for turbine lubricants. SVR® targets and removes the dissolved varnish pre-cursors which are the cause of varnish. By removing these waste oxidation by-products, you restore the oils original solvency properties which forces any solid varnish deposits to be dissolved back into the oil where they are removed permanently.

Donald

Stop varnish related fail-to-starts and unit trips.

SVR[®] attacks the source of the problem on a molecular level, removing the oxidation by-products that form varnish deposits. SVR[®] reverses the chemical process of varnish deposit formation by restoring oil health removing varnish throughout the system and in critical components so your servo valves operate more efficiently than ever.

Advanced media technologies.

ICB's patented ion-exchange resin technology removes soluble oxidation by-products and restores demulsibility during normal turbine operation without damaging additive chemistry. With the most advanced media, SVR[®] has 4x more capacity than competing varnish removal systems.

Remove acid.

Acid in turbine oil is by-product of oxidation, a leading pre-cursor to varnish formation. SVR[®] removes acid improving oxidative stability, slowing oxidation rate and dramatically reducing a source of varnish production.

Attack the problem, not the symptoms.

Turbine oil is condemned when anti-oxidant (AO) additive levels deplete to 20% of new. A dedicated SVR[®] performs in parallel with AO additives to slow depletion to drastically extend the life of your oil. On top of being the ultimate varnish deposit recovery system, SVR[®] restores and protects oil health and actively prevents new varnish from forming. Once varnish is under control the benefit of longer oil life can be fully realized.

Work with the experts.

With SVR[®], you'll work alongside industry experts and receive comprehensive oil analysis and results interpretation to provide the best solution to extend your fluid life and make varnish vanish, for good.

Endless applications.

In addition to a range of options including the PM-1 Particle Monitor, explosion proof models, a range of power options, even stainless steel vessels, SVR[®] can be completely customized to provide the perfect solution for your application.

Elements that go beyond industry standard.

ICB[®] Advanced Resin Technology.

Turbine oil varnish deposits form when oil becomes saturated with oxidation by-products from fluid breakdown. ICB[®] goes where other technologies can't to remove polar oxides on a molecular level. When varnish deposits are affecting servo valve response time, that

means the oil is saturated.

SVR[®] addresses this by removing dissolved oxidation by-products and restoring the oil's solubility. The restored oil dissolves deposits back into solution which can then be removed by the SVR[®]. The process repeats during recovery until the entire system and the oil are varnish free. That's when you see a white patch. Once the varnish is gone, SVR® continues to work by removing by-products as they form to prevent future deposits. ICB® also slows antioxidant additive depletion to boost oil life. ICB® is the only technology that treats the dissolved varnish during normal turbine operation to prevent varnish from forming.

HP107 for ISO Code Management.

DFE rated advanced media technologies provide the highest level of particulate capture and retention so your equipment operates unimpeded by contamination. The coreless filter element in every SVR[®] delivers remarkably low ISO Codes, taking the dirt load off of critical system lube and

> hydraulic control filter elements (IGV, pump discharge). In addition to particulate control, the HP107 with VTM media also removes the insoluble oxidation byproducts that are suspended in the oil, working hand-in-hand with the ICB[®] media to rapidly reduce varnish potential and restore the health of vour oil. The element is oversized to perform over a long element lifespan and to ensure low environmental and bottom line impact. To top it off, the HP107 element comes standard with an integral zero leak bypass so with every filter change, you get a new bypass along with peace of mind.

SVR® Quick Guide

o loading ICB® housing with 2 elements stacked
[®] vessel drain valve
gh efficiency post-filter housing
R [®] inlet large suction
[®] vessel flow balancing valve
[®] vessel flow Isolation valve
® vessel flow control meter
ane for ICB® element removal and draining

The Proven Varnish Solution

MPC Δ **E** Condition Scale

Normal	Monitor	Abnormal	Critical
<15	16-25	26-35	>36

Figure 1 depicts SVR1200 on a 7FA gas turbine with critically high varnish potential (MPC ΔE) experiencing slow servo valve response time and sticking. SVR[®] had an immediate impact on the 6,200 gallon / 24,000 liter lube reservoir. Within 45 days MPC values were reduced to condition normal.

Starting RULER was 5 meaning only 5% AO remained in the oil, below condemning level. By installing SVR® before a fluid change, all varnish deposits were removed before the oil change which allowed new oil to be added to a clean reservoir. If not for the deposit removal, AO in the new oil could have immediately depleted to as low as 65%.

Figure 2 is the restoration of a combustion turbine with heavy varnish deposits where MPC varnish potential dropped to 35 after SVR[®] installation. 40 days into service, the ICB[®] elements were changed as they were fully loaded with oxidation by-product. Once changed, MPC dropped to single digits. In the case of a heavily varnished turbine, 2 to 3 sets of ICB[®] elements might be required to achieve condition normal. Once MPC drops to single digits, the ICB[®] elements would normally be replaced annually to maintain the lubricant in optimal condition.

Note: Graph lines have been smoothed to demonstrate long term performance and MPC values will fluctuate as varnish is drawn from the system back into solution and subsequently removed from the system by the SVR[®]

VTK Varnish Test Kits

Colorimetric analysis per ASTM D02.C0.01 WK13070 is used to determine varnish potential in turbine lube oil. A mixture of the sample oil and petroleum ether is used to make the soluble by-products available for collection on a patch. The patch is analyzed with a spectrometer measuring ΔE reported as the MPC ΔE value.

SVR[®] Specifications

Dimensions ¹	Height SVR1200 58" (147 cm) 98" (249 cm) with crane	Length ² 48″ (122 cm)	Width ² 26″ (66 cm)	Weight 700 lbs (318 kg)	
	SVR2400 –	70″ (178 cm)	30″ (76 cm)	1000 lbs (454 kg)	
Connections	Inlet 1.5" FNPT with locking ball valve		Outlet 1" FNPT with locking ball ve	alve	
Max Reservoir Size	SVR1200 + SVR1200X 8,000 gal (30,000 liter) reservoir		SVR2400 Max 16,000 gal (60,000 liter) reservoir		
Element Configuration	Particulate filter Main Filter SVR1200: HP107L18-VTM710-C-V SVR1200: ICB600524-V x 2 SVR2400: HP107L18-VTM710-C-V SVR2400: ICB600524-V x 4 SVR1200X: no particulate filter included SVR1200X: ICB600524-V x 2		2		
Seals	Fluorocarbon + silicone				
Operating Temperature	Fluid Temperature Ambient Temperature 86°F to 176°F -4°F to 104°F (30°C to 80°C) (-20C to 40C)				
Materials of Construction	Housings Carbon steel with industrial coating ASME U Code optional	Tray Carbon steel v industrial coa	Fitting with Swage ting	s lok® stainless	
Electric Motor	TEFC, 56-145 frame 1-1.5 hp, 1150-1750 RPM				
Motor Starter	MSP (motor starter/protector) in an IP65	5, aluminum enclosure wit	th short circuit and overload	protection.	
Pump	Cast iron, positive displacement gear po on pump inlet 15 psi (1 bar). Consult fac	ump with internal relief. N ctory for higher pressures.	laximum pressure		
Pump Bypass	Full bypass at 90 psi (6.2 bar)				
Total System Flow ³	SVR1200 7-11 gpm	SVR2400 14-16 gpm			
ICB [®] Canister Flow Rates ⁴	SVR1200 + SVR1200X 5 gpm (18.9 lpm) max	SVR2400 10 gpm (37.9 l	pm) max		
Pneumatic Option Air Consumption⁵	~40 cfm @ 80 psi				
Media Description	VTM $\beta 0.9_{ C } \ge 4000$ particulate, insoluble oxid by-product and water removal media	lation	ICB® Patented ion-exchange med removal of acids, varnish d oxidation by-products and ions from mineral based tu	lia for molecular eposits, soluble dissolved metal rbine oil.	
Fluid Compatibility	Petroleum and mineral based fluids only (standard). For phosphate ester and other specified synthetic fluids, see FSA (page 112) or contact factory.				
Hazardous Environment Options	Select pneumatic powered unit (Power Option 00) or explosion proof NEC Article 501, Class 1, Division 1, Group C+D. Call for IEC, Atex or other requirements.				

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²Spill retention pan standard size. Contact factory for custom pan sizing. ³Controlled via flow control valve + flow meter (included standard).

⁴Maximum system flow dependent on and will vary with motor selection.

⁵Air consumption values are estimated maximums and will vary with regulator setting.

SVR[®] Part Number Builder

SVR	Turbine Type Indicator Power Options Special Options				
Model	Particulate FilterICBRecommended Reservoir Size1200 HP107L18-VTM710-C-VICB600524-V × 2Max 8,000 gal (30,000 liter) reservoir2400 HP107L18-VTM710VICB600524-V × 4Max 16,000 gal (60,000 liter) reservoir1200X none (omit △P indicator and power options)ICB600524-V × 2Max 8,000 gal (30,000 liter) reservoir				
Turbine Type	CT Combustion turbine - mineral based oil ST Steam turbine - mineral based oil				
ΔP Indicator ¹	 D 22 psid visual gauge + electric switch E 22 psid visual gauge 				
Power Options Contact factory for options not listed	60 Hz, 1150-1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. 22 208-230 V ac, 1P 21 220 V ac, 1P 11 110 V ac, 3P 23 208-230 V ac, 3P 40 380-440 V ac, 3P flow meter included. 46 460-480 V ac, 3P 52 525 V ac, 3P flow meter included. 57 575 V ac, 3P 52 525 V ac, 3P flow meter included.				
	Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X Add X prefix to power option listed above. Not available with (00) Pneumatic Option.				
Special Options	 A Air cooled heat exchanger (consult factory) C E marked for machinery safety directive 2006/42/EC D High filter ΔP auto shutdown E 100 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle H Automatic high temp shut down (160°F, 71°C) L High filter element ΔP indicator light (particulate filter only) Total system flow meter (120 cSt max) C On-board PM-1 particle monitor S clean oil indicator light U All wetted components 304 or High filter element ΔP indicator light (particulate filter only) V U Code (ASME U code certified) + CRN L Ifting eye kit Z Automatic air bleed valve (includes one per vessel) VFD variable speed motor frequency control On site start-up training 				

¹Particulate filter only. ICB[®] housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled.

²With exception to cast iron gear pump.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

105

FSTO Turbine Oil Varnish Removal Systems

FSTO is the complete oil conditioning solution for turbine and compressor lube oil. FSTO treats both soluble and insoluble forms of oxidation by-products to remove and prevent varnish deposits and deliver guaranteed results.

Utilizing ICB's patented ion-exchange resin technology, FSTO removes the soluble varnish feedstock, acids and protects the anti-oxidant additive package while VTM high efficiency post filter removes insoluble by-products and will deliver unimaginably low ISO cleanliness codes so you can use your clean, in-service oil longer than ever before.

Sized just right.

Not every job calls for a Goliath sized solution. When it comes to small turbine lube oil and compressor reservoirs with contamination problems, the FSTO is sized just right. Sizing and flow rate options mean you get the perfect solution tailored specifically to your systems.

Reverse varnish formation.

Even before MPC values climb, trending acid number can be a leading indicator of trouble ahead. By removing oxidation by-products, FSTO restores the solubility of your oil which in turn chemically removes varnish deposits in your system. The continuous process goes even further by removing the acids from your system on a molecular level, meaning you're free and clear of varnish and its underlying causes.

Continuous varnish control.

Combined VTM and ICB technologies continuously remove soluble and insoluble oxidation by-products so that your turbines operate uninhibited by varnish. With the added benefits of increasing the lifespan of AO packages, implementing the FSTO to your filtration regime will make unit trips and unplanned downtime a thing of the past.

ISO Codes: right on target.

The same ultra-high efficiency particulate filter which removes insoluble oxidation by-products doubles up to deliver incredibly low ISO Codes and take the pressure off your on-board bearing lube, pump discharge, and servo filters, giving you an extension on the lifespans of both your oil and your critical components.

Extend your oil life.

FSTO prevents AO additive depletion, removes acids which negatively affect oxidative stability, and can even improve oil demulsibility to greatly extend the useful life of your oil. Every FSTO comes standard with sample ports in the right locations to arm you with access to consistently accurate and best practice samples.

A league of its own.

ICB is used on over 400 turbine and compressor packages achieving over 40 million hours of operating experience. No other product in the market can match track record or experience level. ROI in a Frame 7ea GasTurbine has been calculated at \$170,000 per year on a \$8000 average annual investment on lubricant maintenance.

FSTO Specifications

Dimensions ¹	Height 72″ (183 cm)	Length ² 47.5″ (121 cm)	Width ² 31.5″ (80 cm)	Weight 585 lbs (265 kg)		
Connections	Inlet 1" FNPT with ball valve		Outlet 1" FNPT with ball valve	Outlet 1″ FNPT with ball valve		
Max Reservoir Size	FSTO05 600 gal (2,271 liters)	FSTO1 1,200 gal (4,542 liters)	FSTO2 4,000 gal (15,000 liters)	FSTO4 8,000 gal (30,000 liters)		
Element Configuration	Particulate + Insoluble Filter HP107L18-VTM710-C-V		ICB FST005: ICB600504-V FST01: ICB600504-V x 2 FST02: ICB600524 -V FST04: ICB600524-V x 2	ICB FSTO05: ICB600504-V FSTO1: ICB600504-V x 2 FSTO2: ICB600524 -V FSTO4: ICB600524-V x 2		
Seals	Fluorocarbon + silicone					
Operating Temperature	Fluid Temperature 86°F to 176°F (30°C to 80°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)	Ambient Temperature -4°F to 104°F (-20C to 40C)		
Materials of Construction	Housings Carbon steel with industrial coating		Tray Carbon steel with industria	Tray Carbon steel with industrial coating		
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RPM					
Motor Starter	MSP (motor starter/protecto	or) in an IP65, aluminum end	closure with short circuit and ove	erload protection.		
Pump	Cast iron, positive displacer on pump inlet 15 psi (1 bar)	nent gear pump with intern . Consult factory for higher	al relief. Maximum pressure pressures.			
Pump Bypass	Full bypass at 150 psi (10 ba	ır)				
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³					
Media Description	VTM $\beta 0.9_{[C]} \ge 4000$ particulate, insoluble oxidation by-product and water removal media.		ICB Patented ion-exchange resin media for molecular removal of acids, varnish deposits, soluble oxidation by-products and dissolved metal ions from mineral based turbine oil.			
Fluid Compatibility	Petroleum and mineral based fluids only (standard). For phosphate ester and other specified synthetic fluids, see FSA (page 108) or contact factory.					
Hazardous Environment Options	Select pneumatic powered unit (Power Option 00) or explosion proof NEC Article 501, Class 1, Division 1, Group C+D. Call for IEC, Atex or other requirements.					

³Air consumption values are estimated maximums and will vary with regulator setting.

FSTO Part Number Builder

FSTO			-						
Flow R	ate	Indicator Power Options	Special Options						
Flow Rate ¹	05 1 2 4	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 4 gpm (15.1 lpm)							
ΔP Indicator ²	D E	22 psid visual gauge + e 22 psid visual gauge	lectric switch	1					
Power Options Contact factory for options not listed	60 12 22 23 46 57	Hz, 1750 RPM 120 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P	50 11 21 40 52	Hz, 1450 RPM 110 V ac, 1P 220 V ac, 1P 380-440 V ac, 3P 525 V ac, 3P	Pne 00	eumatic Pneumatically driven air motor & PD pump. FRL & Flow meter included.			
	Exp x_	Explosion proof - Class 1, Division 1, Group D per NEC 501 – Ready for outdoor use X_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option.							
XAdd X prefix to power option listed above. Not available with (00) Pneumatic Option. Special Options A Air cooled heat exchanger (consult factory) B Complete filter bypass line C CE marked for machinery safety directive 2006/42/EC D ³ High filter ΔP auto shutdown E 100 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle H Automatic high temp shut down (160°F, 71°C) L ³ High filter element ΔP indicator light M Total system flow meter (120 cSt max) O On-board PM-1 particle monitor & clean oil indicator light S ⁴ All wetted components 303 or higher stainless steel U CUL and/or CSA marked starter enclosure for Canada									

Z On site start-up training

¹Nominal flow rates at 60 Hz motor speeds.

²Particulate filter only. ICB housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled.

³Requires ΔP Indicator option "D" selected. ⁴With exception to cast iron gear pump.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

hyprofiltration.com/

109

A complete solution for trouble-free EHC operation using phosphate ester fluids. Avoid premature fluid replacement, bleed and feed, and eliminate expensive flushes. FSAPE is the new standard for maintenance of water, acid, ISO Code, resistivity, and removal of gels and deposits that cause servo valve failure.

Ideal for steam turbine EHC fire resistant fluid maintenance.

110

Resolve servo valve issues.

FSA skids featuring ICB[®] technology will maintain ideal fluid chemistry and cleanliness. Systems will reduce elevated Acid Number and water, increase resistivity and eliminate the cause of fluid gelling and servo valve sticking.

Minimize acid. Maximize efficiency.

High acid number (AN) in phosphate ester means premature fluid replacement if left unmanaged. Since acid production is autocatalytic, the acid in your system will generate more acid until your fluid becomes unusable. ICB technology can reduce AN to as low as 0.03 with 4-8x the capacity of other acid removal filters.

111

Clean, dry, healthy oil.

Water and phosphate ester together form strong acid which leads to premature fluid replacement. Integrated TMR^{∞}N₂ Headspace Dehydrators continuously introduce nitrogen through the headspace to simultaneously remove water, O2, CO, H and other high temperature breakdown gases. Maintaining low water levels and eliminating reservoir contact with O2 will proactively manage the rate of fluid breakdown and minimize acid production.

Remove what others left behind.

Dissolved metal ions in phosphate ester form gels and deposits that accumulate on servo valve nozzles & flappers, resulting in slow servo valve response time, unit trips, and reduced fluid resistivity. ICB removes all dissolved metal, reverses gel and deposit formation, prevents unit trip and restores servo valve response time.

Comprehensive EHC protection.

In addition to FSA we offer these important companion products that eliminate common weak points in EHC fluid maintenance. Dynafuzz stainless steel filters to eliminate the common issues of high pressure filter fiber migration and static discharge, ECR to restore fluid color and to reduce patch weight, and VTM to upgrade existing low pressure filters.

Extend your oil life, don't flush it.

Low resistivity in phosphate ester leads to electrokinetic corrosion between dissimilar metal surfaces and is one of the condemning factors of phosphate ester. In addition to removing acids and dissolved metals, ICB has been shown to significantly increase fluid resistivity to prevent premature fluid replacement, expensive bleedand-feed routines and unnecessary chemical flushes.

FSA Specifications

Dimensions ¹	Height 58″ (147 cm)	Length ² 47.5″ (121 cm)	Width ² 31.5" (80 cm)	Weight 571 lbs (259 kg)		
Connections	Inlet 1" FNPT with locking ball v	valve	Outlet 1" FNPT with locking ball valve			
Max Reservoir Size	FSA05 200 gal (750 liters)	FSA1 400 gal (1,500 liters)	FSA2 800 gal (3,000 liters)	FSA4 1,600 gal (6,050 liters)		
Element Configuration	Particulate filter HP107L18-VTM710-C-V		ICB FSA05: ICB600504-A FSA1: ICB 600504-A x 2 FSA2: ICB600524-A FSA4: ICB600524-A x 2			
Seals	Fluorocarbon + silicone					
Operating Temperature	Fluid Temperature 86°F to 176°F (30°C to 80°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)			
Materials of Construction	Housings Carbon steel with industria	al coating	Tray Carbon steel with indust	rial coating		
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RPM					
Motor Starter	MSP (motor starter/protec	tor) in an IP65, aluminum en	closure with short circuit and c	overload protection.		
Pump	Cast iron, positive displace on pump inlet 15 psi (1 ba	ement gear pump with intern r). Consult factory for higher	al relief. Maximum pressure pressures.			
Pump Bypass	Full bypass at 150 psi (10 b	bar)				
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ³					
TMR-N ₂ Air Consumption	FSA05 < 1.2 SCFM TMR-N ₂ - 601902	FSA1 < 1.2 SCFM TMR-N ₂ - 601902	FSA2 < 2.0 SCFM TMR-N ₂ - 601903	FSA4 < 3.6 SCFM TMR-N₂ - 601904		
Media Description	VTM $\beta 0.9_{[C]} \ge 4000 \text{ particulate, i}$ by-product and water remained	nsoluble oxidation oval media.	ICB [®] lon charge bonding resin media for molecular removal of acids, gels and deposits, oxidation by-products and dissolved metal ions from phosphate ester and other synthetic fluids.			
Fluid Compatibility	EHC Fire resistant hydrauli	ic fluids (phosphate ester). Fo	or polyol ester and other specif	fied synthetics contact factory.		
Hazardous Environment Options	Select pneumatic powerec Class 1, Division 1, Group	l unit (Power Option 00) or e: C+D. Call for IEC, Atex or oth	xplosion proof NEC Article 501, er requirements.	,		

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²Spill retention pan standard size. Consult factory for custom pan sizing.
³Air consumption values are estimated maximums and will vary with regulator setting.

hyprofiltration.com/

FSA Part Number Builder

FSA Fluid Type	FI	low Rate Indicator	Power Options	Special Options				
Fluid Type	PE	Phosphate Ester (no	t compatible wit	h Skydrol) ¹				
Flow Rate ²	05 1 2 4	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 4 gpm (15.1 lpm)						
ΔP Indicator ³	D E	22 psid visual gauge 22 psid visual gauge	e + electric switcl	h				
Power Options Contact factory for options not listed	60 12 22 23 46 57	Hz, 1750 RPM 120 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P	50 11 21 40 52	Hz, 1450 RPM 110 V ac, 1P 220 V ac, 1P 380-440 V ac, 3P 525 V ac, 3P	Pne 00	umatic Pneumatically driven air motor & PD pump. FRL & Flow meter included.		
	Explosion proof - Class 1, Division 1, Group C+D per NEC 501 – Ready for outdoor use X_ Add X prefix to power option listed above. Not available with (00) Pneumatic Option.							
Special A Air cooled heat exchanger (consult factory) Options C E marked for machinery safety directive 2006/42/EC D High filter ΔP auto shutdown E 100 mesh cast iron basket strainer F Filter element ΔP gauge with tattle tale follower needle H Automatic high temp shut down (160°F, 71°C) L High filter element ΔP indicator light M Total system flow meter (120 cSt max) O On-board PM-1 particle monitor & clean oil indicator light S All wetted components 304 or higher stainless steel ⁴ T3 Remove TMRN ₂ reservoir headspace dehydrator U CUL and/or CSA marked starter enclosure for Canada V Lifting eye kit W Automatic air bleed valve Z On site start-up training								

¹Consult factory for additional fluid type information.

²Nominal flow rate at 60 Hz motor speeds.

³Particulate filter only. ICB housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled. ⁴With exception to cast iron gear pump.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

113

FSJL Aeroderivative Jet Lube Oil Conditioning Systems

FSJL fluid conditioning skids are a total solution for managing aeroderivative jet lube oils susceptible to high thermal oxidative stress and coke deposit formation. FSJL prevents and reduces coke deposits that lead to variable geometry failures. Extend useful fluid life by removing the catalysts for oxidation; O₂ contact, acid, oxidative coking precursors, dissolved metals, combustible gases, water, and varnish all while maintaining low ISO Codes. Specifically designed for MIL-L-23699 aeroderivative jet lube oils, the FSJL eliminates the contamination that leads to variable geometry failures.

Ideal for maintenance of aeroderivative jet lube oil and hydraulic systems.

.2

Prevent coking deposits.

Mechanical wear, oil flow restrictions, and increased operating temperature are all caused by coking deposits, the major cause of premature failure in aeroderivative oils. ICB's patented ion-exchange resin technology removes the oxidation by-products before they can cause additive depletion and coking deposits that form on the turbine rotor, bearings and other wetted surfaces.

Remove acids & dissolved metals.

Aeroderivative turbines often operate at elevated Acid Number (AN) values which attack metal surfaces, adding dissolved metals into the lubricant. ICB technology removes acids and metals, keeping rates of breakdown at a minimum while eliminating the feedstock that leads to coke formation.

High efficiency filtration.

The FSJL high efficiency final filter removes particles and insoluble by-products, delivering unimaginably low ISO Codes to extend the life of your mechanical components and bearings. To top it off, every HP107 filter element comes with an integral bypass valve to give you the safety and security you want with the filtration power you need.

Actively manage oxidation.

Normal lubricant reservoirs are vented to atmosphere, the key ingression pathway for water and oxygen which are two major causes of jet lube breakdown. The integrated TMR[®]-N₂ headspace dehydrator on every FSJL actively blankets the reservoir with dry nitrogen to remove water, oxygen and combustible gases and greatly reduce the rate of oxidation and extend your fluid's useful life.

Full-time (water) extraction.

For applications that require full-time operation of reservoir headspace extraction fans, special option V1 integrates the V1 Compact Vacuum Dehydrator in place of the TMR[®]-N₂ to provide a powerhouse water removal option that complements ICB and high efficiency on-board particulate filtration.

FSJL Specifications

Dimensions ¹	Height 58″ (147 cm)	Length ² 47.5″ (121 cm)	Width ² 31.5" (80 cm)	Weight 571 lbs (259 kg)			
Connections	Inlet 1″ FNPT with ball valve		Outlet 1" FNPT with ball valve				
Max Reservoir Size	FSJL05 150 gal (560 liters)	FSJL1 300 gal (1,125 liters)	FSJL2 800 gal (3,000 liters)	FSJL4 1,600 gal (6,000 liters)			
Element Configuration	Particulate filter HP107L18-VTM710-C-V		ICB FSJL05: ICB600504-J FSJL1: ICB 600504-J x 2 FSJL2: ICB600524-J FSJL4: ICB600524-J x 2				
Seals	Fluorocarbon + silicone						
Operating Temperature	Fluid Temperature 86°F to 176°F (30°C to 80°C)		Ambient Temperature -4°F to 104°F (-20C to 40C)				
Materials of Construction	Housings Carbon steel with industrial	coating	Tray Carbon steel with industrial coating				
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RPM						
Motor Starter	MSP (motor starter/protecto	r) in an IP65, aluminum encl	osure with short circuit and ove	rload protection.			
Pump	Cast iron, positive displacen on pump inlet 15 psi (1 bar).	nent gear pump with interna Consult factory for higher p	I relief. Maximum pressure pressures.				
Pump Bypass	Full bypass at 150 psi (10 ba	r)					
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ²						
TMR-N ₂ Option Air Consumption	FSJL05 < 1.2 SCFM TMR-N ₂ - 601902	FSJL1 < 1.2 SCFM TMR-N ₂ - 601902	FSJL2 < 2.0 SCFM TMR-N ₂ - 601903	FSJL4 < 3.6 SCFM TMR-N₂ - 601904			
Media Description	VTM $\beta 0.9_{C} \ge 4000$ particulate, ins by-product and water remove	soluble oxidation val media.	ICB Ion charge bonding resin media for molecular removal of acids, gels and deposits, oxidation by-products and dissolved metal ions from polyol ester and other synthetic fluids.				
Fluid Compatibility	Type II, MIL-L-23699, polyol e	ester base stock, synthetic tu	rbo oils and polyol esters.				
Hazardous Environment Options	Select pneumatic powered u Class 1, Division 1, Group C	unit (Power Option 00) or ex +D. Call for IEC, Atex or othe	olosion proof NEC Article 501, r requirements.				

(Ex) **(E** (m²)

Ð

ւ(Սլ

¹Dimensions are approximations taken from base model and will vary according to options chosen. ²Air consumption values are estimated maximums and will vary with regulator setting.

hyprofiltration.com/

FSJL Part Number Builder

FS Fluid Type	Flow R	late Indicator Pc	wer Options Special	
Fluid Type	JL	Aeroderivative jet lu	Options 	
Flow Rate'	05 1 2 4	0.5 gpm (1.7 lpm) 1 gpm (3.7 lpm) 2 gpm (7.5 lpm) 4 gpm (15.1 lpm)		
∆P Indicator ²	D E	22 psid visual gauge 22 psid visual gauge	+ electric switch	
Power Options Contact factory for options not listed	60 F 12 22 23 46 57 Exp	Hz, 1750 RPM 120 V ac, 1P 208-230 V ac, 1P 208-230 V ac, 3P 460-480 V ac, 3P 575 V ac, 3P	50 Hz, 1450 RPM 11 110 V ac, 1P 21 220 V ac, 1P 40 380-440 V ac, 3P 52 525 V ac, 3P 53 1, Division 1, Group C+D	Pneumatic 00 Pneumatically driven air motor & PD pump. FRL & flow meter included. per NEC 501 – Ready for outdoor use
Special Options	A B C D E F H L M O S T 2 U V 1 W Z	Add X prefix to power Air cooled heat excha Complete filter bypa: CE marked for machi High filter ΔP auto sh 100 mesh cast iron b Filter element ΔP gau Automatic high temp High filter element Δ Total system flow me On-board PM-1 partii All wetted componer Add TMR™-N₂ reserv CUL and/or CSA mar Lifting eye kit Add V1 Compact Vac Automatic air bleed v On site start-up train	anger (consult factory) ss line nery safety directive 2006/42/EC iutdown asket strainer ige with tattle tale follower needle o shut down (160°F, 71°C) P indicator light ster (120 cSt max) cle monitor & clean oil indicator lig nts 304 or higher stainless steel ³ oir headspace dehydrator ked starter enclosure for Canada uum Dehydrator valve ing	ght

¹Nominal flow rates at 60 Hz motor speeds. ²Particulate filter only. ICB housing is equipped with 0-100 psi static pressure gauge. Industrial, liquid filled. ³With exception to cast iron gear pump.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

117

118

ECR[®] EHC Fluid Conditioning

ECR® is an integrated skid-mounted kidney loop filtration system designed for phosphate ester fluid, primarily electro-hydraulic control (EHC) turbine systems, equipped with four proprietary filtration technologies to achieve fluid standards as defined in ASTM D8323-21.

The four filtration technologies include:

- 1. Electrostatics
- 2. Patented ICB® ion-exchange
- 3. High-efficiency particulate removal
- 4. TMR[®] N2 water removal

Unique restoration solution.

Pressure induced dieseling and element spark discharge generate sub-micron insoluble carbon based particles that cannot be removed by traditional particulate filtration. The ECR combines a high voltage electrostatic field with a proprietary collector element design to remove the sub-micron particles that are the cause of dark EHC fluid and high varnish potential values (MPC). Used in conjunction with patented ICB ion-exchange filters engineered to remove acids and soluble varnish at the molecular level, dissolved contamination is addressed, removing phosphate ester varnish. Additional contaminants that come out of solution are removed when the fluid passes through the high-efficiency particulate filter. Together these three leading filtration technologies maintain the quality, life and reliability of EHC fluids.

Extend your oil life.

ECR decreases air entrainment, improves fluid color, and increases resistivity, integral in the management of phosphate ester fluid quality. In conjunction with TMR[®] N₂ for water removal, comprehensive fluid chemistry management is achieved which, when maintained over time, eliminates the need for chemical flushes.

Comprehensive testing & support.

With typical analysis showing as little as 10% of the contamination present, specialized testing through the EPT Clean Oil Fluid Technical Center documents results to ASTM D8323-21 standards.

Quick Reference Guide

ECR 10000 model shown

3. Phase Three: Patented ICB ion-exchange filtration targeting dissolved contamination removal.

> **2.** Phase Two: Electrostatic filtration targeting sub-micron (<4 micron) particulate contamination removal.

4.

Phase Four: High-efficiency particulate filtration targeting the removal of contaminants that have come out of solution during phase two and three.

1.

Phase One: TMR N2 highpurity nitrogen water removal maintaining water content between 200 ppm and 500 ppm.

ECR 10000 Includes

- Complete set of filters required for the initial clean up and maintenance mode.
- EPT Clean Oil Fluid Technical Center fluid analysis and reporting until results are documented.
- Dedicated online training, commissioning resources and warranty registration.
- Engineer approved system manufactured to ISO 9001 standards, designed to facilitate rapid approval and deployment.
- Certified stainless steel pressure vessels.
- Skid mounted low footprint kidney loop system that does not demand an outage or downtime for installation.

hyprofiltration.com/

Fluid Clean-Up & Maintence

	Clean-Up Mode Consumables	Clean-Up Mode	Maintenance Mode Consumables	Maintenance Mode		
ICB [®] Ion-Exchange Filter	8	Changed every two (2) weeks, for the first eight (8) weeks or until fluid is confirmed to meet ASTM D8323-21 targets.	2	Once fluid targets are achieved, filter change timelines extend to every three (3) months.		
ECR [®] Collector 4		Changed every two (2) weeks, for the first eight (8) weeks or until fluid is confirmed to meet ASTM D8323-21 targets.	1	Once fluid targets are achieved, Collector change timelines extend to every three (3) months.		
High-Efficiency Particulate Filters	4	Changed every two (2) weeks, for the first eight (8) weeks or until fluid is confirmed to meet ASTM D8323-21 targets.	1	Once fluid targets are achieved, filter change timelines extend to every three (3) months.		
Pneumatic Particulate Filters	1	Changed every six (6) months.	1	Changed every six (6) months.		
Pneumatic Coalescer Filters	1	Changed every six (6) months.	1	Changed every six (6) months.		
Electrostatic Vessel O-Ring	1	Suggested spare.	1	Suggested spare.		
ICB Vessel O-Ring	1	Suggested spare.	1	Suggested spare.		
Mechanical Vessel O-Ring	1	Suggested spare.	1	Suggested spare.		

ECR[®] Specifications

Model	ECR10000
Height	60″ (152 cm)
Width	64" (163cm)
Depth	30" (62cm)
Weight	680 Lbs (308 kg)
Connections	1" Female NPT
Max Flow Rate	ECR10000-H 3 GPM (11 LPM) ECR10000-XL 5 GPM (19 LPM)
Element Quantity	1 Collector element 2 ICB® Ion-exchange Filters 1 High-efficiency Particulate Filter – HP107L18-VTM710-C-V (β0.9 _[c] > 4000)
Seals	Fluorocarbon
Control Panel	Weather resistant NEMA 4 enclosure
High Voltage Capacity	12,000 V
Electric Motor	1/2HP, 56C Frame 1450-1750 RPM, TEFC
Dirt Capacity	15 lbs (6.8 kg) per element
Element Lifespan	4,000 hrs (Collector), 1 month during clean up mode for the first three months and 6-12 months during maintenance mode determined by sample analysis (ICB [®] Filter), Differential Pressure (High Efficiency Particulate Filter)
Max Suction Line Pressure Loss	6 psi, 12.2 inches Hg (Vacuum)
Max Water Level	<500 ppm for maximum efficiency.
Fluid Compatibility	Phosphate ester based fire resistant fluids.

ECR[®] Part Number Builder

ECR10000

		-	
CollectorType	ICB® Type		Power Option

Fluid Resistivity Value **Collector Element** Collector Type OMIT > 8G-OHMS/cm COL-600990 COL-600907 LR < 8G-OHMS/cm **Reservoir Volume ICB** Filter **ICB** Type OMIT ≤ 800 US Gal / 3,028 Liter 602210A н > 800 US Gal / 3,028 Liter 602354A XL ≥ 2600 US Gal / 10,000 Liter 600524A **Power Options** 60 Hz, 1750 RPM 50 Hz, 1450 RPM 11 110 V ac, 1P 12 120 V ac, 1P 22 208-230 V ac, 1P 21 220 V ac, 1P 46 460-480 V ac, 3P

hyprofiltration.com/

ICB[®] Ion-Exchange Filters

While offering best in class acid and varnish removal, ICB® filter elements significantly reduce production losses and resolve servo-valve issues by eliminating the contamination responsible for sticking or sluggish valves. Conventional acid filters cannot remove this contamination and are also significant contributors of harmful metals and fine particulate. ICB® filters eliminate these key issues and direct maintenance to where it matters most.

122

O EPT

Stop varnish related fail-to-starts and unit trips.

ICB[®] attacks the source of the problem on a molecular level, removing the oxidation by-products that form varnish deposits. By reversing the chemical process of varnish deposit formation, ICB[®] restores oil health to remove varnish throughout the system and in critical components so your servo valves operate more efficiently than ever.

Remove what others left behind.

As dissolved metals accumulate, they act as a catalyst forming depots on servo valves and gels that can cause valve restriction and mask filter elements. ICB[®] elements do not contribute metals and will remove dissolved metals from airborne ingress and element leaching to <10 ppm.

Minimize acid. Maximize efficiency.

High acid number (AN) in phosphate ester means premature fluid replacement if left un-managed. Since acid production is autocatalytic, the acid in your system will generate more acid which, left unchecked, can quickly become a serious problem. $ICB^{\textcircled{B}}$ technology removes acid to our target of AN < 0.05 with 4-8 times the capacity of alternate acid removal medias.

Extend your oil life, don't flush it.

For most EHC systems, the primary operating fluid is phosphate ester. This is a very safe fluid with excellent lubricating properties that when properly maintained can provide years of trouble-free operation without the need for a flush during replacement. Unfortunately, many power plants have insufficient or incorrect maintenance which causes wide ranging issues that result in actual or high risk of production loss, and expensive flushes after the fact.

Unlike all others.

ICB[®] is unlike all other ion exchange resin products. Our 20 years of operating experience and continued research has led to best in class resistivity improving capability with increases >10X having been observed. We use custom engineered resins that have been optimized for the lubricant environment.

Upgrade your filtration.

ICB[®] filters are drop in replacements for many OEM sizes and come in a variety of chemistries for specialized lubricant and fluid applications. When used in conjunction with Donaldson Hy-Pro Dualglass media filter elements, ISO particle codes will be decreased significantly with document results.

Acid Scavenging Technology Comparison

Selexsorb	Fuller's Earth	ICB [®] Ion-Exchange Filter
Produces by-products that react with fluid to cause soft gel deposits	Produces hard salts and soap deposits that coat sensitive servo valves	Removes the dissolved break-down products that are responsible for servo valve failures (See Figures 1 and 2)
Can only control acids up to 0.25 mg KOH/g, leading to diminished fluid resistivity	Can only control acids up to 0.25 mg KOH/g, leading to diminished fluid resistivity	Dramatically increases fluid resistivity values which eliminates a common servo-valve failure mode referred to as electro-kinetic-wear or valve erosion
Removes acid but re-contaminates your fluid with sodium, aluminum, silicon	Removes acid but re-contaminates your fluid with magnesium, iron, calcium	Does not contribute fine particulate, or add dissolved metals that normally contribute to increased rates of oxidation
3x less capacity to remove acid than ICB®	6-7x less capacity to remove acid than $\text{ICB}^{\textcircled{B}}$	Highest ratio of resin volume to flow rate for higher single pass removal rate and much lower cost of ownership
Made from purified activated Alumina as a Y-Zeolite	Made from magnesium oxide and hydroxide, processed from attapulgus clay or attpulgite	Complete stainless steel construction, featuring robotic, spiral welding which provides maximum filter integrity, adding a new fail-safe in the EHC fluid conditioning system

Figure 1 – Deposition Tendency Test

In Step 1 of the Deposition Tendency Test, referred to in the EPRI EHC Fluid Maintenance Guide 2002, Page 4-39, EHC fluid is mixed with Hexane which forces out dissolved contamination into solid form. In the first three test tubes (A,B,C), EHC fluid using conventional treatment form visible solids. Servo-valve performance and reliability would be significantly impaired using EHC fluid in this condition. In the last 2 test tubes (D,E) where the EHC fluid was cleaned with ICB[®], no deposition or solids of any form are observed. Servo-valve response time and reliability would be maximized operating EHC fluid in this condition.

AN Reduction with ICB 0.25 0.20 **Acid Number** 0.15 0.10 0.05 0.00 2 6 7 8 9 10 11 12 13 14 15 1 3 л 5 Months

Figure 2 – Servo Valve Spool with Contamination Deposit

Servo Valve Spool showing signs of fluid contamination deposition. The contamination responsible for these deposits is not routinely measured and in this example the servo-valve would be at abnormal risk level for failure. The Deposition Tendency test as shown in Figure 1, easily identifies if this contamination is present.

ICB[®] Specifications

Dimensions	Model	Length	Outer Diameter	Inner Diameter	Dry Weight
	ICB-600502	11.030 in (28.016 cm)	4.869 in (12.367 cm)	1.866 in (4.740 cm)	8.5 lbs (3.9 kg)
	ICB-600503	18.000 in (45.720 cm)	6.211 in (15.776 cm)	2.250 in (5.715 cm)	13.0 lbs (5.9 kg)
	ICB-600504	18.000 in (45.720 cm)	6.211 in (15.776 cm)	2.600 in (6.604 cm)	13.0 lbs (5.9 kg)
	ICB-600508	32.072 in (81.463 cm)	6.202 in (15.753 cm)	1.555 in (3.950 cm)	23.0 lbs (10.4 kg)
	ICB-600509	17.875 in (45.403 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	35.0 lbs (15.9 kg)
	ICB-600510	19.010 in (48.285 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	37.0 lbs (16.8 kg)
	ICB-600511	19.473 in (49.461 cm)	11.020 in (27.991 cm)	2.375 in (6.033 cm)	38.0 lbs (17.2 kg)
	ICB-600514	20.157 in (51.199 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	40.0 lbs (18.1 kg)
	ICB-600524	20.157 in (51.199 cm)	11.045 in (28.054 cm)	2.375 in (6.033 cm)	40.0 lbs (18.1 kg)
	ICB-601349	24.563 in (62.390 cm)	10.281 in (26.114 cm)	8.919 in (22.654 cm)	35.0 lbs (15.9 kg)
	ICB-601946	9.119 in (23.162 cm)	6.211 in (15.776 cm)	2.600 in (6.604 cm)	6.0 lbs (2.7 kg)
Operating Temperature	86°F to 176°F (30°C to 80°C)				
Operating Pressure	Maximum operating Δ	P is <90 psid (<6.2 bard)	with normal ΔP <25 psid	(<1.8 bard)	
Materials of Construction	Shell Stainless steel	Endcaps Stainless steel	Handle Stainless steel	Seals Silicone ¹	
Media Description ²	A A filter for phosphate ester, fire-resistant lubricants, sold under the brand names: Fyrquel®, Fyrquel® EHC, Fyrquel® EHC Plus, Fyrquel® GT, Reolube®TurboFluid 46XC, Reolube® TurboFluid B, Anvol® 46 XC, Shell Turbo® Fluid DR 46, Mobil Pyrotec® HFD 46, and many others	C C filter for polyol ester fluids including QuintoLubric®	J J filter for polyol ester lubricants used in aero derivative jet engines including Mobil Jet [®] II	T T filter for mineral oil based hydraulic fluids	V V filter for mineral oil based turbine and compressor lubricants
Applications	A Acid + Varnish Scavenging (Acid Numbers <0.5 mg KOH/g)	C Aggressive Acid + Varnish Scavenging (Acid Numbers >0.5 mg KOH/g)	J Acid + Varnish Scavenging	T Varnish Removal	V Aggressive Varnish + Moderate Acid Scavenging
Filter Sizing Guidelines	Phosphate ester and E maintenance. Mineral per day for normal lub	HC applications ideally r Dil based turbine and co ricant maintenance. For	equire 3-4x reservoir exch mpressor lubricants requ fluid or lubricant restorat	nange per day for norma ire 1x reservoir exchang ion higher flow rates ma	ll fluid e y be

required. Contact Donaldson Hy-Pro for application guidelines, selection and sizing assistance.

¹ICB-600508 utilizes Fluorocarbon gasket standard.

² Fyrquel is a registered trademark of ICL, Reolube is a registered trademark of Chemtura, Anvol is a registered trademark of Castrol. Shell Turbo is a trademark of Shell Oil Company. Mobil Pyrotec and Mobil Jet are trademarks of Exxon Mobil Corporation. Quintolubric is a registered trademark of Quaker Chemicals. For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

hyprofiltration.com/

¹²⁶ Water Contamination

Types, Removal & Prevention

Water is one of the most common and most damaging contaminants found in lube or hydraulic systems. Continuous or periodic high water levels result in damage such as: metal etching (corrosion), abrasive wear in hydraulic components, dielectric strength loss, fluid breakdown, additive precipitation and oil oxidation, reduction in lubricating properties, and many others.

The effects of moisture in your oil systems can drastically reduce on-stream plant availability. Bearing life and critical component life can also be greatly reduced by moisture levels above and within the saturation point. What makes matters worse, the degree of contamination and type of water contamination play a pivotal role in determining the best method for removal. The three types are listed below.

Free and dissolved water in hydraulic and lube systems leads to bearing fatigue, accelerated abrasive wear, corrosion of metal surfaces, increased electrical conductivity, viscosity variance, loss of lubricity, and fluid additive breakdown. Sources include condensation, reservoir leakage, worn actuator seals, heat exchanger leakage, new oil and more.

Water Contamination Solutions

127

128 Vacuum dehydration removes free, emulsified and dissolved VUD Vac-U-Dry Vacuum water while maintaining low operating ISO Codes with high Dehydrators efficiency particulate filtration. With flow rates up to 100 gpm (379 lpm) and 24x7 unattended operation capabilities, the VUD is ideal for all hydraulic and lube oil fluids up to ISO VG 680. V1 136 Optimized for tight spaces with a salt water edition for marine applications, V1 removes free, emulsified and dissolved water while Compact VUD Vacuum Dehydrators maintaining low operating ISO Codes with high efficiency particulate filtration. Ideal for all hydraulic and lube oils up to ISO VG 680. COT 140 A total conditioner for turbine and compressor lube oils, COT rapidly removes gross free and emulsified water by coalesce liquid-liquid **Turbine Oil** Conditioning separation technology. Ideal for managing steam turbine water Systems ingression during start-up or continuous cooler/steam leaks. COT maintains low operating ISO Codes with high efficiency particulate filtration. Suitable only for R&O lube oils up to ISO VG 68. **FCLCOT** 146 A compact, portable solution for boiler feed pump and compressor lube oils, FCLCOT rapidly removes gross free and emulsified **Turbine Oil** water by coalesce liquid-liquid separation technology. Suitable Conditioning Filter Carts only for R&O lube oils up to ISO VG 68. Maintains low operating ISO Codes with high efficiency particulate filtration. TMR-N₂ 150 A dedicated active headspace dehydrator and nitrogen generator for hydraulic reservoir and gearbox applications. TMR-N, maintains Active Headspace water between 200-500 ppm, prevents airborne water, particulate and Dehydrator + Nitrogen metal ion ingression, and removes dissolved combustible gases. Generators TMR-Air 152 A dedicated active headspace dehydrator for hydraulic reservoir and gearbox applications. TMR-Air maintains water between 200-500 ppm, Active Headspace and prevents airborne water, particulate and metal ion ingression. Dehydrators

Donaldson.

HY-PRO

VUD Vac-U-Dry Vacuum Dehydrators

The optimized balance between heat, vacuum, process design and an easy, user friendly operating system for removal of water and particulate from hydraulic and high viscosity lubricating oils. Equipped with generously sized, high efficiency filtration, the VUD is the ultimate oil purifier.

Keeping fluids clean and dry extends component and bearing life, increases productivity, minimizes downtime and extends useful fluid life. The VUD is ideal for removal of all forms of water, including free, emulsified and dissolved water and gas from hydraulic and lubricating oils.

Contamination is complicated. Removing it is easy.

With features including viscosity specific dispersal element designs, fin tube low watt density heaters, oversized particulate filter, adjustable recirculation line, auto phase detection and reversal, programmable thermostat, proprietary vacuum chamber level control, foam sensor and auto-drain, VUD is the ultimate contamination removal system.

Results you can see.

Clear covers on the vacuum chamber and condensate collection tanks let you see what is really happening inside the VUD. You will know when you start removing water or when you are almost below saturation point with just a glance.

Never stops working.

VUD is a workhorse designed for 24/7 unattended operation. With a dual condensate collection tank design, auto water level sensors and automatic drain valves, there is no need to stop to drain water. The oversized condenser and dual condensate collection tanks work together to keep the water out of the vacuum pump.

Integrated intelligence.

The VUD smart relay enabled control panel makes start-up and shut-down safe and operator friendly so that everything is controlled with the simple push of a button. To take it even further, the optional PLC Touch Screen provides operating controls and data right at your fingertips.

Filtration starts with the filter(s).

Particulate media options down to $\beta 3_{|C|} \geq 4000$ and viscosity specific dispersal elements provide you with the best filtration and water removal capabilities in the world, period.

Completely, entirely, totally, all inclusive.

When it comes to comprehensive filtration and water removal, the buck stops here. VUD customization takes on many forms such as unique size requirements, combining VUD with other technologies such as FRF acid or turbine lube oil varnish removal, all to deliver the perfect oil purification system to meet your exact needs.

The Unmatched Purification Process

How it works

Contaminated oil is drawn into the Vac-U-Dry purifier by a high output vacuum pump. The oil passes through the low watt density heater where heated to optimum temperature for the dehydration process (150°F, 66°C). The oil enters the vacuum chamber passing through specially designed dispersal elements which create a thin film of oil that is exposed to the vacuum. The water is vaporized and then drawn into the condenser where it liquefies and drains into the condensate tank.

The dehydrated oil flows to the bottom of the vacuum chamber and is removed by the discharge pump where it is pumped through the high efficiency particulate filter assembly ($\beta x_{[c]}$ >4000) and returned to the system. The recirculating line helps the Vac-U-Dry reach optimum temperature in cold start situations and can be used to throttle machine inlet and outlet flow. From here, your oil can either be recirculated for additional temperature and contamination control or returned to your reservoir or equipment where it will operate more efficiently than ever.

The Proven Performer

No other technology removes water faster or more safely with less chance of foaming than the Donaldson Hy-Pro VUD. The graph here represents the estimated time required per model to remove water from 5000 ppm (0.5%) down to 150 ppm (0.015%) for increasing reservoir sizes.

Vacuum Pump Options

VUDs come standard with several vacuum pump options to best suit your application needs. Options C and D offer maximum portability to use your VUD in almost any location. Whether you're using your VUD to service multiple systems or for service work, you'll have unmatched filtration everywhere you need it.

C – Dry Seal (Dry Rotary Claw)

Long maintenance interval (10,000 hour synchronizing gear oil change) and great for portability. With excellent corrosion resistance to condensate exposure, this offers our lowest cost of ownership vacuum pump option.

D – Dry Seal (Lubricated Rotary Vane)

500-750 hour maintenance interval (lubricating oil and filter change), excellent for portability, compact size and low weight. The D option vacuum pump offers our lowest initial cost of ownership.

L – Liquid Ring

Ideal for dedicated VUD applications where ambient conditions are hot and humid and portability is not required. Minimum 3 gpm (11 lpm) external process water is required. Maintenance includes maintaining clean process water and balancing compound pressure gauge.

Vacuum power that doesn't suck.

Pulled by the vacuum pump, oil passes through the heater housing and vacuum chamber dispersal elements, providing smooth flow for optimum water removal without foam. The tall vertical vacuum chamber achieves maximum oil film surface area on the dispersal elements, aided by proprietary variable flow level control, to remove water from your oil incredibly fast with unmatched consistency.

Dispersal elements.

Inside every VUD's vacuum chamber is the secret to its high efficiency water removal success. Viscosity range specific dispersal elements configured properly means faster water removal without the foaming issues that come with a one size fits all dispersal media for hydraulic and lube oils.

Take control of your system, automatically.

The Inlet Control Valve (N/C Solenoid) automatically closes when the VUD is not in operation, preventing the unit from siphoning fluid from a reservoir or flooding from a positive head inlet situation.

Synced to your system.

Achieve optimum VUD process temperature faster and ease start-up on high viscosity oils, especially when they're cold. Also ideal for adjusting overall VUD return flow down when using VUD on a small reservoir or gearbox. Simple and effective, the recirculation line adds incredible flexibility to fine tune the VUD to your system.

You can't beat the heat.

With no direct contact with the heating element, your turbine oil will safely and quickly get up to temperature without the risk of burning. The programmable temperature control with integral no-flow switch prevents oil damage and allows you to heat your fluids at your own pace. And what's more: all this comes standard on every VUD.

VUD Specifications

Model	V3C	V5C	V10C	V15C	V20C	V30C	V45C	V60C	V100C
Height ¹	60″	75″	75″	75″	75″	89″	75″	89″	89″
	(152 cm)	(191 cm)	(191 cm)	(191 cm)	(191 cm)	(226 cm)	(191 cm)	(226 cm)	(226 cm)
Length ¹	48″	56″	56″	56″	72″	84″	84″	96″	120″
	(122 cm)	(142 cm)	(142 cm)	(142 cm)	(183 cm)	(213 cm)	(213 cm)	(244 cm)	(305 cm)
Width ¹	32″	32″	32″	32″	36″	40″	48″	60″	96″
	(82 cm)	(82 cm)	(82 cm)	(82 cm)	(91 cm)	(102 cm)	(122 cm)	(153 cm)	(244 cm)
Weight ¹	850 lbs	2000 lbs	2400 lbs	2500 lbs	2800 lbs	3100 lbs	3400 lbs	3700 lbs	4600 lbs
	(386 kg)	(908 kg)	(1089 kg)	(1134 kg)	(1270 kg)	(1406 kg)	(1542 kg)	(1678 kg)	(2087 kg)
Dispersal Element Quantity	2 x 11″ (28 cm)	2 x 22″ (56 cm)	3 x 22″ (56 cm)	3 x 22″ (56 cm)	4 x 22″ (56 cm)	4 x 36″ (91 cm)	8 x 22″ (56 cm)	8 x 36″ (91 cm)	12 x 36″ (56 cm)
Operating Temperature	Fluid Temperature 30°F to 180°F (0°C to 82°C)				Ami -4°F (-200	Dient Tempera to 104°F C to 40C)	ture		
Materials of	Frame Filter as			ssembly	sembly Condensate tanks			E lement bypa s	ss valve
Construction	Painted steel & 304 stainless Carbon			steel	steel Stainless steel			Nylon	
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $βx_{[C]} \ge 4000$			A G8 Dualgla media com removal sc	iss high perfo Ibined with wa rim. βx _[C] ≥ 40	rmance ater 00	W Stainless s media βx _{ic}	teel wire mes _] ≥ 2 (βx ≥ 2)	n

¹Dimensions are approximations taken from base model and will vary according to options chosen.

VUD Part Number Builder

VUD]	-
	Flow Rate	L	acuum Pump	Power Options	Dispersal Element	Media	Seals	Heaters	Condenser	Special Options	Multi Function Unit
Flow Rat	te ¹	3 5 10 15 20	3 gpm (11 5 gpm (18 10 gpm (3 15 gpm (5 20 gpm (5	lpm) 3.9 lpm) 37.9 lpm) 56.8 lpm) 75.7 lpm)			30 45 60 100	30 gpm (114 lpm) 45 gpm (170 lpm) 60 gpm (225 lpm) 100 gpm (379 lpm)			
Vacuum Pump Ty	pe	C D	Dry seal (Dry seal (rotary claw) lubricated ro	tary vane)		L	Liquid ring (extern	al water sup	ply required)	
Power Options		60 H 23 46 57	1z 208-230 V 460-480 V 575 V ac,	' ac, 3P ' ac, 3P 3P			50 H 38 41 52	Hz 380 V ac, 3P 415 V ac, 3P 525 V ac, 3P			
Dispersa Element	al	D P W	Pleated d Metallic p Pleated st	ispersal elen backed disper tainless steel	nent - all synt sal element dispersal ele	thetic media (- not for use i ement (ISO V(viscos n phos G 150-3	ity ≤ ISO VG 220) sphate ester system 320)	s (viscosity	≥ ISO VG 460)	
Media Selection	n	G8 [1M 3M 6L 10M 16M 25M	$\begin{array}{l} \text{Dualglass} \\ \beta 3_{[C]} \geq 400 \\ \beta 5_{[C]} \geq 400 \\ \beta 7_{[C]} \geq 400 \\ \beta 12_{[C]} \geq 400 \\ \beta 12_{[C]} \geq 40 \\ \beta 12_{[C]} \geq 40 \\ \beta 22_{[C]} \geq 40 \end{array}$	00 00 00 000 000 000			Stai 25W 40W 74W 149W	nless wire mesh 25µ nominal 40µ nominal 74µ nominal V 149µ nominal			
Seals		B V E ²	Nitrile (Bu Fluorocar EPR seals	na) bon ; (for Skydrol	use)						
Heaters		9 12 24 36 48	9 kW 12 kW 24 kW (2 36 kW (3 48 kW (4	x 12 kW) x 12 kW) x 12 kW)			56 64 80 96	56 kW (2 x 12 kW) 64 kW (4 x 16 kW) 80 kW (5 x 16 kW) 96 kW (6 x 16 kW)	2 x 16 kW)		
Condens	ser	A B	Air coolee Air & liqu	d id cooled			L	Liquid cooled			
Special Options		3 4 8 ³ B C D E F G J K L M	LFM3 Filt LFM4 Filt 8" solid v Auto com Pre-filter CE marke Dirty filte Vacuum p Vacuum c 316 stainle Individual Sight flow Lifting eye Discharge	er Housing (3 er Housing (4 vheel upgrad densate drain bag filter hou ed + internation r indicator allo oump exhaus chamber foar ess condensat heater select v indicator (whe e kit e line flow mo	3 particulate 4 Particulate 9 1 sing 1 onal crating (1 arm light 1 filter 1 ning sensor 1 wet parts (3(1 or switches 1 neel type) 1 eter	Elements) Elements) (V5-V60) 04 standard)	O P P9 ⁶ R ³ S S ⁹⁷ T ⁴ U V ⁴ W X ⁸ X ¹ X ² Y	On-board PM-1 par PLC touch screen of Phosphate ester flu Electrical phase rev Inlet line basket str Skydrol fluid comp Hose kit (suction & 50' (15 m) electrical Inlet control valve Water sensor and i Explosion proof - C Class 1, Div 1 Grou Explosion proof cla C/D NEMA7 control VFD variable speed	ticle monito peration & uid compatile versal switch ainer patibility mo return hose l cord witho (for positive ndicator Class 1, Div 2 p C/D NEM/ ass 1 div 2 g l panel d motor freq	or data bility modification dification es + wands) ut plug head inlet) 2 Group C+D, Air A7 control panel roup uency control	ı Purge Panel
Multi Fu	nction	omit COT	St	andard VUD	capabilities	+ auto water	drain f	unction (sized to ba	ndle 100% c	of VUD flow)	

Units

COT coalesce vessel adder + auto water drain function (sized to handle 100% of VUD flow) Phosphate ester acid & dissolved metal removal (contact factory for alternate fluids) SVR1200CT⁹ Varnish removal & prevention side loop (5 gpm continuous element flow up to 8000 gal/30,000 liter reservoir)

¹Nominal flow rates at 60 Hz motor speeds.

²Contact factory for other fluid option compatibility. ³Standard supplied options, must be included in part number.

ICBPE⁹

⁴Recommended option. "When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. "When selected, must be paired with Seal option "E." Contact factory for more information or assistance in fluid compatibility.

Donaldson. HY-PRO

135

⁸Consult factory for other explosion proof options. [®]Varnish and ICB add-on technologies condition a portion of maximum VUD flow. Standard ww flow rate ≤ 5 gpm. ICB add-

on will be sized to reservoir volume. V3 uses single element housing (ICB600524)

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

136 **V1** Compact VUD Vacuum Dehydrator

A compact and mobile dehydration and high efficiency filtration solution, the V1 prevent acidity and loss of lubrication properties caused by inefficient dehydration and high ingression.

Ideal for rapidly removing all forms of water including free, emulsified, and dissolved water and gas from hydraulic and lube oils.

V1S model shown

Different by design.

The V1S is optimized for low headspace clearance for use in marine applications and with the S special option, V1S can remove the water without leaving salt behind to cause problems in thruster, steering and propulsion systems.

Clear covers on the vacuum chamber and condensate collection tank let you see as the V1 removes the water from your oil and collects it in the condensate tank. From there, you can say goodbye as it's drained and removed from your system, for good.

Size matters.

With small size comes great power. Utilizing single phase power supplies, V1 models provide the same unmatched water and particulate removal as larger VUDs on a smaller scale with the added benefit of incredible mobility. And with the ability to use single phase connections for power, you'll have clean, dry fluids anywhere and everywhere you need them.

Integrated intelligence.

The V1 smart relay enabled control panel makes start-up and shut-down operator friendly and safe so that when you press the start button the automatic scripted sequence controls what comes on and when, meaning you don't need three hands to get it going.

Never stops working.

V1 is a workhorse designed for 24/7 unattended operation. With a dual condensate collection tank design, auto water level sensors and automatic acting drain valves, there is no need to stop to drain water.

Completely, entirely, totally, all inclusive.

When it comes to comprehensive filtration and water removal, the buck stops here. V1 customization takes on many forms such as unique size requirements, combining V1 with other technologies (i.e. FRF acid or turbine lube oil varnish removal), or other customer specific needs.

V1 Specifications

Model	V1P	V1S						
Height ¹	50″ (127 cm)	45″ (114 cm)						
Width ¹	28″ (71 cm)	34″ (86 cm)						
Depth ¹	28″ (71 cm)	24″ (61 cm)						
Weight ¹	400 lbs (181 kg)	400 lbs (181 kg)						
Inlet	³ / ₄ " male JIC ³ / ₄ " male JIC							
Outlet	¹ / ₂ " male JIC ¹ / ₂ " male JIC							
Electric Motor	TEFC with overload protection							
Pump	Cast iron, positive displacement gear pump with internal relief.							
Vacuum Pump	Dry Rotary Vane							
Operating Temperature	Fluid Temperature 32°F to 180°F (0°C to 82°C)	Ambient Temperature -4°F to 104°F (-20C to 40C)						
Materials of Construction	Frame Carbon steel or stainless steel	Filter assembly Aluminum and carbon steel						
Electric Connection	50' (15 m) power cord supplied with machine.							
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{ C } \ge 4000$	\boldsymbol{W} Stainless steel wire mesh media $\beta \boldsymbol{x}_{[c]} \geq 2$ ($\beta x \geq 2$)						
Fluid Compatibility	Petroleum and mineral based fluids. For specified synthetics contact factory for compatibility with fluorocarbon seal option. For phosphate ester or skydrol fluid compatibility select fluid compatibility from special options.							

¹Dimensions are approximations taken from base model and will vary according to options chosen.

V1 Part Number Builder

V1								`A -	
	Model Type	Power O	ption	Dispersal Element	Media	Seal	Heater		Special Options
Mod	el	P S	Han Low	d truck style profile desi	design for gn optimize	maximum r ed for marin	nobility e low headspa	ace appli	ications
Powe	er ons	60 H 12	z 120 י	V ac, 1P				50 F 22	Hz 220 V ac, 1P
Disp	erser	23 D P W	230 Plea Meta Plea	V ac, 1P ted disperse allic packed ted stainles	er element - disperser e s steel disp	all syntheti lement (visc	c media (visco cosity ≥ ISO VC nt (ISO VG 150	osity ≤ IS(3 460)¹ 0-320)	SO VG 220)
Med Sele	ia ction	G8 E 1M 3M 6M 12M 16M 25M	Dualg β3 _[C] β5 _[C] β7 _[C] β12 _{[1} β22 _{[1}	Jlass ≥ 4000 ≥ 4000 ≥ 4000 _{Cl} ≥ 4000 _{Cl} ≥ 4000 _{Cl} ≥ 4000 _{Cl} ≥ 4000				Stair 40W 74W 149W	inless wire mesh 40μ nominal 74μ nominal V 149μ nominal
Seals	S	B V E	Nitri Fluo EPR	le (Buna) rocarbon seals + stai	nless steel s	support mes	sh		
Heat	:er ¹	1 2 4	1 kV 2.5 k 4.5 k	/ (power op (W (power o (W (power o	tion 12 only options 22 8 options 22 8	/) x 23 only) x 23 only)			
Spec Optio	cial ons	A C D F P9 ² O S ³ S9 ⁴ T V ⁵ W	Auto CE n Filte Foar Phos PM- Stain Skyo Hose Inlet Wate	p-condensat narked for n r High ΔP Li ming Senso sphate ester 1 On-Board nless compo drol fluid co e kit (suction control valv er Sensor W	e drain nachinery s ght r (Vac Cham fluid comp Particle Mo onents for s mpatibility n & return h ve (for positi ith Display	afety directi ober) oatibility mo nitor alt water rei modificatior ioses + wand tive head inl	ve 2006/42/EC dification moval n ds) let)		

¹Heater is dependent on power option

²When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

³Only available on V1S model.

"When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

⁵Recommended option.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Donaldson.

HY-PRO

139

COT Turbine Oil Conditioning Skids

Remove harmful particulate and water contamination and achieve target ISO Codes faster with the COT.

Ideal for preventing unplanned downtime and premature component failures in turbine lube systems.

hyprofiltration.com/

140

Size matters.

COT optimizes coalesce and separator flow density to rapidly remove gross free water ingress during steam turbine start-up or in the event of a seal leak. High single pass water removal efficiency that keeps up with ingression so your bearings don't see free or emulsified water.

141

Filtration starts with the filter(s).

COT combines high efficiency single pass particulate and water removal to ensure that your turbine oil is always in spec, eliminating premature component failures and downtime. With particulate media options down to $\beta_{3_{[C]}} > 4000$ and 100% synthetic coalesce/ separator elements that remove all free and emulsified water down to saturation point, your turbines will be protected and running more efficiently than ever.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. That's why every COT comes standard with properly positioned sample ports to arm you with access to consistently accurate system conditions and letting you know exactly how well your filtration is performing.

Take control of your systems.

Smart relay and auto water drain make COT a 24/7 unattended, easy-to-operate solution that functions as an in-line contamination barrier for every drop of turbine oil that goes into your turbines. Optional PLC touchscreen enables custom programming so your COT can purify reservoirs on your schedule and even data log ISO Codes and water removal rates so you know your lube

You can't beat the heat.

With no direct contact with the heating element, your turbine oil will safely and quickly get up to temperature without the risk of burning. The programmable temperature control with integral no-flow switch prevents oil damage and allows you to heat your fluids at your own pace. And what's more: all this comes standard on every COT.

is clean and reliable when you're on and off the clock.

Built to exceed your expectations.

Flexible dimension and process arrangement are available with every COT so you get the perfect contamination solution for your turbine lubrication system. Even choose from explosion proof models and color coordinate to fit perfectly with your existing safety standards for the ultimate system in turbine oil conditioning.

The COT Process

How it works

Oil from the system entering the COT through a positive displacement gear pump passes through low watt density heat to achieve the optimum turbine oil temperature for efficient liquid-liquid separation by coalesce, >100°F (38°C).

The first stage of oil conditioning is particulate removal by $\beta 3_{icl} > 4000$ high efficiency glass media element. Next, the oil enters the two stage coalesce vessel where the oil passes through 100% synthetic media coalesce elements. The free and emulsified water coalesces to form larger droplets that overcome the specific gravity of the oil and drop to the bottom of the vessel. Stage two in the coalesce vessel is the separator/postfilter element that functions as a water barrier for emulsified and small droplets of water that have not reached a size large enough to drop of suspension. After passing through the water barrier, the oil passes through a final stage of particulate removal filtration by $\beta 3_{10} > 4000$ media to achieve even lower operating ISO Codes.

The coalesce vessel will achieve single pass water removal from 5000 ppm to <150 ppm under normal operating conditions and oil health. As water collects in the bottom of the coalesce vessel, a specific gravity float reaches a limit indicator that will open the automatic water drain valve and eject the separated water as it is removed to allow for 24/7 continuous operation. When fitted with a totalizing meter on the water drain line, quantity and timing for water removal can be established.

The COT Process

COT Specifications 144

Model	COT5	COT10	COT30	COT60	COT100				
Max Reservoir Size	800 gallons (3000 liters)	1600 gallons4000 gallons(6000 liters)(15100 liters)		8000 gallons (30300 liters)	13250 gallons (50200 liters)				
Height ¹	65″ (165 cm)	83″ (211 cm)	88″ (224 cm)	88″ (224 cm)	100″ (254 cm)				
Length ¹	56″ (142 cm)	60″ (153 cm)	″ 84″ 53 cm) (213 cm)		96″ (244 cm)				
Width ¹	32″ (81 cm)	40″ (102 cm)	40″ (102 cm)	60″ (153 cm)	60″ (153 cm)				
Weight ¹	1400 lbs (635 kg)	2000 lbs (907 kg)	2700 lbs (1225 kg)	3400 lbs (1542 kg)	4400 lbs (1996 kg)				
Inlet ²	1″ (2.5 cm)	1.5″ (4 cm)	2″ (5 cm)	3″ (7.5 cm)	3″ (7.5 cm)				
Outlet ²	1″ (2.5 cm)	1″ (2.5 cm)	1.5″ (4 cm)	2″ (5 cm)	3″ (7.5 cm)				
Motor Size	1 hp	1.5 hp	5 hp	7.5 hp	10 hp				
Pre-Filter Elements	1 - 18" Prefilter Element	1	1	2	3				
Coalesce Elements	1 x HP538L38-CS3MV ³	2 x HP731L39-CV	5 x HP731L39-CV	8 x HP731L39-CV	10 x HP731L39-CV				
Separator/ Polish Elements	(combination element)	1 x HP582L30-S1MV	3 x HP582L30-S1MV	5 x HP582L30-S1MV	9 x HP582L30-S1MV				
Seals	Fluorocarbon								
Operating Temperature	Fluid Temperature 32°F to 200°F (0°C to 93°C)		Ambient Temperature 40°F to 104°F (4°C to 40°C)						
Materials of Construction	Housings Carbon steel with indus	strial coating	Frame Carbon steel with industrial coating						
Media Description	M G8 Dualglass, our lates rated, high performanc hydraulic & lubrication	t generation of DFE e glass media for all fluids. $βx_{ C } \ge 4000$	Coalesce/Separator Coalesce: 100% synthetic fiber media Separator: TEFLON [®] coated screen (water barrier)						
Fluid Compatibility	Mineral based turbine oil, call factory for synthetic. Cannot be used with AW hydraulic oils or phosphate esters. For water removal in AW hydraulic oils and phosphate esters, see VUD (page 136).								

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²Female pipe port.

TEFLON® is a registered trademark of DuPont.

COT Part Number Builder

COT Flow Rate	Po	wer Options Heat Capacity Seal Special Options
Flow Rate ¹	5 10 30 60 100	5 gpm (18.9 lpm) 10 gpm (37.9 lpm) 30 gpm (114 lpm) 60 gpm (225 lpm) 100 gpm (379 lpm)
Power Options	60 23 ² 46 57	Iz, 1750 RPM50 Hz, 1450 RPM230 V ac, 3P38460 V ac, 3P41410 V ac, 3P415 V ac, 3P575 V ac, 3P52525 V ac, 3P
Heat Capacity	12 24 36 ³ 48 ³ 56 ³ 64 ³ 72 ³ 84 ³ X	12 kW 24 kW 36 kW 48 kW 56 kW 64 kW 72 kW 84 kW No heaters
Seal	B V	Nitrile (Buna) Fluorocarbon
Special Options	8 A ⁴ B C J ³ K M O P S T ⁴ U V X Y	8" (20 cm) solid wheel upgrade Auto water drain (manual drain included) Adjustable coalesce vessel bypass loop CE marked for machinery safety directive 2006/42/EC Individual heater selector switches for limited amp circuits Sight flow indicator Water discharge totalizing meter On-board PM-1 particle monitor & clean oil indicator light PLC touch screen control (does not include VFD) Oil sensing safety shut-off in water discharge line 10' (3 m) hose kit + wands (JIC female connections) 50' (15 m) electrical cord (no plug supplied) Inlet control valve (for positive head application) Explosion proof. Consult factory for other explosion proof options. VFD variable speed motor frequency control

¹Nominal flow rates at 60 Hz motor speeds.

²Only available with COT5.

³Possible high full amp load (consider special option J). ⁴Recommended option.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Donaldson.

145

FCLCOT Turbine Oil Conditioning Filter Cart

A mobile solution that maintains turbine lube oil by removing water and particulate contamination that can cause corrosion, fluid breakdown, abrasive wear on components, additive precipitation, reduced lubricity, and dielectric strength loss.

Ideal for turbine lube oil, boiler feed pumps, compressors and others R&O applications.

hyprofiltration.com/

Filtration starts with the filter(s).

FCLCOT combines high efficiency single pass particulate and water removal to ensure that your turbine oil is always in spec, eliminating premature component failures and downtime. With particulate media options down to $\beta 3_{[C]} > 4000$ and 100% synthetic coalesce/separator elements that remove all free and emulsified water down to 50 ppm, your turbines will be protected and running more efficiently than ever.

Cleaner fluids: greater efficiency.

Water and particulate contamination in turbine oils can lead to decreased output efficiency, metal etching, fluid breakdown, and abrasive wear in hydraulic components among many other costly issues. With a single pass through the FCLCOT, you'll not only remove harmful contaminants but increase your uptime and promote the best environment for your turbine to operate efficiently.

Never stops working.

Designed for 24/7 unattended operation, FCLCOTs with auto water drain technologies provide you with the safety and security to know your turbine oil is clean and dry even when you're off the clock.

Unmatched on the move.

Non-shredding, never flat wheels and easy to maneuver cart design with ergonomic handle mean you get powerful filtration exactly when and where you need it.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. That's why every FCLCOT comes standard with properly positioned sample ports to arm you with access to consistently accurate system conditions and letting you know exactly how well your filtration is performing.

Completely customizable.

Whether you need the heavy duty off-road tires for greater mobility or add one of several inlet strainer options, each and every FCLCOT can be built specifically to suit your needs. And with options for both convenience and tailoring for specific applications, you'll be sure to get the perfect solution for all your contamination problems.

FCLCOT Specifications

Dimensions ¹	Height 62″ (158 cm)	Width 30.5″ (77	cm)	Depth 29″ (74 cm)	Weight 379 lbs (172 kg)
Connections	Inlet 1″ male JIC		Outlet 1" male JIC		Hoses 1″ x 10 ft (2.4 m)
Element Configuration	Particulate filter HP110NL11-3MV			Coalesce/Separ HP538L38-CS3N	ator Filter 1∨
Seals	Fluorocarbon				
Operating Temperature	Fluid Temperature 80°F to 250°F (27°C to 121°C)			Ambient Tempe 40°F to 104°F (4°C to 40°C)	rature
Materials of Construction	Housings Carbon steel with in	dustrial coating	Hoses Reinforced synth	etic	Wands Stainless steel
Electric Motor	TEFC, 56-145 frame 0.5 hp, 1450-1750 RF	PM			
Motor Starter	MSP (motor starter/	protector) in an IP65	5, aluminum enclo	sure with short circ	uit and overload protection.
Electric Connection	Voltages 230 V ac and Voltages over 230 V	l under, single phase ac: 35′ (11 m) powe	: 35' (11 m) retracta r cord included.	ble cord reel include	d. Power Option 12 includes NEMA 5-15 plug.
Pump	Cast iron, positive d on pump inlet 15 ps	isplacement gear pu i (1 bar). Consult fac	ump with internal ctory for higher pr	relief. Maximum pr essures.	essure
Pump Bypass	Full bypass at 150 p	si (10 bar)			
Pneumatic Option Air Consumption	~40 cfm @ 80 psi ² 35' (11 m) retractable	e air hose included v	when pneumatic o	option selected. Rep	laces 35' (11m) electric cord reel.
Media Description	M G8 Dualglass, our la rated, high performa hydraulic & lubricati	test generation of D ance glass media fo on fluids. $\beta x_{[C]} \ge 400$	DFE r all D0	Coalesce/Separ Coalesce: 100% Separator: TEFL	ator synthetic fiber media ON® coated screen (water barrier)
Fluid Compatibility	Mineral based turbin esters. For water rer	ne oil, call factory fo noval in AW hydrau	or synthetic. Canno lic oils and phosp	ot be used with AW hate esters, see VU	hydraulic oils or phosphate D (page 128).
Hazardous Environment Options	Select pneumatic pc Call for IEC, Atex or	wered unit (Power other requirements	Option 00) or expl . If Power Option 3	losion proof NEC A X selected, no elect	ticle 501, Class 1, Division 1, Group C+D. rical cord or cord reel will be included.

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²Air consumption values are estimated maximums and will vary with regulator setting.

FCLCOT Part Number Builder

40
49

FCLCOT	Flow Rate Indicator Power Options Hose Special Options		
Flow Rate ¹	05 0.5 gpm (1.7 lpm) 1 1 gpm (3.7 lpm) 2 2 gpm (7.5 lpm)		
ΔP Indicator ²	D22 psid visual gauge + electric switchE22 psid visual gauge		
Power Options Contact factory for options not listed	60 Hz, 1750 RPM 50 Hz, 1450 RPM Pneumatic 12 120 V ac, 1P 11 110 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & 22 208-230 V ac, 1P 21 220 V ac, 1P 00 Pneumatically driven air motor & PD pump. FRL & 23 208-230 V ac, 3P 40 380-440 V ac, 3P 52 525 V ac, 3P 46 460-480 V ac, 3P 52 525 V ac, 3P 52 525 V ac, 3P		
Hose Connection	XAdd X prefix to power option listed above. Not available with (00) Pneumatic Option. G Female BSPP swivel hose ends, no wands S Female JIC swivel hose ends, no wands W Female JIC swivel hose ends, with wands		
Special Options	Electrically powered automatic water drain Complete filter bypass line CE marked for machinery safety directive 2006/42/EC High filter ΔP auto shutdown 100 mesh cast iron basket strainer Filter element ΔP gauge with tattle tale follower needle Spill retention pan with fork guides (industrial coated steel) 10 ft (3 m) return line hose extension 20 ft (6 m) return line hose extension Add pressure gauge between pump & filter assembly HP75L8-149W Spin-On suction strainer High filter element ΔP indicator light Total system flow meter (120 cSt max) PM-1 ready (plumbing only) On-board PM-1 particle monitor & clean oil indicator light Spill retention pan with wheels (industrial coated steel) All wetted components 304 or higher stainless steel Foam filled off-road tires for rugged environment CUL and/or CSA marked starter enclosure for Canada Automatic air bleed valve On site start-up training		

¹Nominal flow rates at 60 Hz motor speeds. ²Particulate filter only. Coalesce housing is equipped with sliding differential indicator.

³PM-1 will not function properly in the presence of free or emulsified water at or above saturation point. If selected, PM-1 is installed downstream of the filtration. ⁴With exception to cast iron gear pump.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

TMR[®]-N₂ Water Removal System

Total Water Removal Nitrogen systems (TMR[®]-N₂) cost effectively remove all 3 forms of water from lubricants and hydraulic fluids through mass transfer which is a highly effective, non-mechanical process. TMR[®]-N₂ generates a constant flow of high purity N₂ which is injected into the head space of the lubricant reservoir to remove and maintain very low water levels.

hyprofiltration.com/

*TMR® is a registered trademark of EPT CLEAN OIL.

Control water contamination.

Produced Nitrogen is vented at low flow out the breather element, eliminating the effects atmosphere has on the fluid. $\text{TMR}^{\textcircled{B}}$ -N₂ systems are regulated, intrinsically safe, and have a manually adjusted flow control valve with flow meter.

Clean, dry, healthy oil.

Dry air mass transfer extracts dissolved water from the fluid and since the nitrogen introduced by the TMR[®]-N₂ is an inert gas, it also removes combustible gases (i.e. CO_2 , C_2H_2 , CO, C_2H_4 , C_2H_6 , CH_4 , and H_2) from the oil to reduce oxidation and fluid breakdown.

Extend your fluid life.

A properly sized TMR[®]-N₂ is designed to remove up to 200 ppm of water per day under normal operating conditions to minimize oxidation and fluid breakdown and extend the useful life of your oil while protecting your critical components.

TMR[®]-N₂ Specifications

Model	TMR-N ₂ -601902	TMR-N ₂ -601903	TMR-N ₂ -601904	TMR-N ₂ -601905 ²
Height ¹	30″ (76 cm)	48″ (122 cm)	48″ (122 cm)	70″ (178 cm)
Width ¹	20″ (51 cm)	20″ (51 cm)	20″ (51 cm)	20″ (51 cm)
Depth ¹	7″ (18 cm)	7″ (18 cm)	7″ (18 cm)	7″ (18 cm)
Weight	38 lbs (17 kg)	44 lbs (20 kg)	48 lbs (22 kg)	55 lbs (9 kg)
Inlet	1⁄4″ FNPT	1⁄4″ FNPT	1/4" FNPT	1⁄4″ FNPT
Outlet	1⁄4″ FNPT	1⁄4″ FNPT	1/4" FNPT	1⁄4″ FNPT
Air Consumption	< 1.2 SCFM 3	< 2.0 SCFM	< 3.6 SCFM	< 6.0 SCFM
Headspace Volume	< 15 ft³ (< 0.42 m³)	< 22 ft³ (< 0.62 m³)	< 36 ft³ (< 1.02 m³)	< 100 ft³ (< 2.8 m³)
Fluid Operating Temperature	30°F to 225°F (0°C to 105°C)	30°F to 225°F (0°C to 105°C)	30°F to 225°F (0°C to 105°C)	30°F to 225°F (0°C to 105°C)
Materials of Construction	Frame Powder coated steel			

¹Dimensions are approximations taken from base model and will vary according to options chosen.

²Ships in two pieces. ³Minimum 100 psig (6.89 barg).

Model	2 3 4 5	$\label{eq:transformation} \begin{split} &TMR^{\$}\text{-N}_2 \text{ Nitrogen Generator for reservoir volume < 400 gal (1,500 liter)} \\ &TMR^{\$}\text{-N}_2 \text{ Nitrogen Generator for reservoir volume < 800 gal (3,050 liter)} \\ &TMR^{\$}\text{-N}_2 \text{ Nitrogen Generator for reservoir volume < 2000 gal (7,650 liter)} \\ &TMR^{\$}\text{-N}_2 \text{ Nitrogen Generator for reservoir volume < 3000 gal (11,500 liter)} \end{split}$
Special Options	M1 M2	Manifold to share TMR [®] -N ₂ with 2 reservoirs (601902 and 601903 models only) Manifold to share TMR [®] -N ₂ with 2 reservoirs (601904 and 601905 models only)

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

hyprofiltration.com/

TNR[®]-Air Water Removal System

TMR[®]-Air systems cost effectively remove all 3 forms of water from lubricants and hydraulic fluids through mass transfer which is a highly effective, non-mechanical process. Using TMR[®]-Air exploits the principle of chemical equilibrium in a gentle, energy efficiency method.

hyprofiltration.com/

*TMR[®] is a registered trademark of EPT CLEAN OIL.

Remove water: protect your systems.

With TMR[®]-Air, dry air is generated at the source, providing unlimited capacity to reduce existing moisture in the reservoir and oils. The water is released from the oil to the super dry air. TMR[®]-Air is a maintenance solution that will maintain water at very low levels (<50 ppm total or in the ideal range between 200~300 ppm for EHC fluids), reducing the rate of lubricant break-down.

Eliminate water at its source.

Free flowing dry air is exhausted out of the breather element, reversing the typical flow configuration of reservoir air and eliminating one of the key ingression points for water and particulate contamination.

Extend your fluid life.

A properly sized TMR[®]-Air is designed to remove up to 100 ppm of water per day under normal operating conditions to minimize oxidation and fluid breakdown and extend the useful life of your oil while protecting your critical components.

TMR®-Air Specifications

Height	24" (61 cm)
Width	14″ (35 cm)
Depth	5″ (13 cm)
Weight	21 lbs (10 kg)
Inlet	1⁄4″ FNPT
Outlet	1⁄4″ FNPT
Headspace Volume	< 36 ft³ (< 1.02 m³)
Flow Rate Manual Control with Flow Meter	0-60 SCFH (0-1680 LPH)
Preset Flow Rate	30 SCFH (840 LPH)
Air Consumption Max @ 100 psi/0.69 MPa (SCFM/LPM)	0-180 SCFH (0-5040 LPH)
Fluid Operating Temperature	30°F to 225°F (0°C to 105°C)
Materials of Construction	Frame Powder coated steel

TMR[®]-Air Part Number Builder

TMR-60090

Special Options

Model

Model	4	TMR [®] -Air for reservoir volume ≤ 2000 gal (7,600 liter)
Special Options	M1	Manifold to share TMR [®] -Air with 2 reservoirs

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

LCS Liquid Conditioning Station

Begin filtration and contain contamination before it ever enters your plant to protect your equipment and your bottom line. Built with your convenience in mind and completely customizable for size and fluids, the LCS is a complete contamination solution for hydraulic and lube oil storage and handling.

hyprofiltration.com/

Everything you need. Within arms reach.

Your day at work is hard enough. That's why we've built the LCS with your convenience in mind. Everything you need, conveniently placed for maximum accessibility. From start-up to clean up, all of your daily activities come without the need for a ladder.

Say goodbye to cross contamination.

Dedicated pump, filter and plumbing for each tank maintain fluid integrity and allow multiple fluids to be filtered exclusively and simultaneously.

The best in filtration³.

Filter fluids as they are added to and dispensed from the reservoirs. Recirculate fluids inside the reservoirs for a third level of unparalleled fluid cleanliness and unimaginably low ISO Codes. And with DFE rated media options down to $\beta 3_{[C]} \ge 4000$ you can be sure contamination stays exactly where you want it: out of your fluid.

Take control of your systems.

The definition of brains and brawn, the control panel on the LCS regulates all the system operations so you can filter and dispense your fluids worry-free. Tucked back and out of the way, once you're up and running you might as well forget it's even there.

Size matters.

Packed with as many reservoirs as your heart desires, the LCS is a behemoth with power that can't be denied. With space for 70 gallons of fluid in each standard reservoir, you can kiss the rows of scattered oil drums goodbye. Or if 70 gallons isn't enough for you, reservoirs can be sized up to 250 gallons so you'll have all your fluids clean, dry, and in one place.

Perfectly tailored to fit your needs.

Label designs, symbols and colors are tailored for each fluid to fit your existing safety and identification standards. To take it even further, each filtration system is set up specifically for the type and viscosity of its specific fluid, meaning you get the perfect contamination solutions for each and all of your fluids.

Minimize the mess.

Dual drip pans allow draining spent filters directly within the Workstation, eliminating oily filter transfer and subsequent oil clean-up.

Setting the new standard.

Sampling and preventative maintenance are no longer optional, they're a necessity. Knowing your fluids are clean is the first step in prolonging the life of your systems and critical components. That's why every LCS comes standard with easy-to-access sample ports in their proper positions so you can always know you're putting clean oils into your systems.

A breath of fresh air.

With built in check valves (0.1 psi, 0.007 bar) to maximize lifespans, Hy-Dry desiccant breathers on each reservoir help remove water contamination from your oils and prevent cross contamination between fluids.

Let there be light.

Integrated LED lights illuminate the Workstation for dispensing fluid, changing elements and reading gages even in poorly lit environments.

Built for industrial use.

Rated to hold 5000 pounds each, the tiered shelves and rock solid frame will handle your plant's filtration needs without breaking a sweat.

LCSX Add-on Kit

For applications with existing tanks or for building your own lube room, the LCSX Add-on Kit provides all the filtration of the LCS in a self-contained, drop-in platform perfect for as many units as you desire and expanding on your time.

156

LCSW Installation Drawings

LCSB Installation Drawings

LCS Specifications

Consult Factory for Part Numbers & Pricing

Model	LCS2		LCS4		LCS6		
Height	96" (244 cm)		96″ (244 cm)		96″ (244 cm)	96″ (244 cm)	
Width	50″ (127 cm)		88″ (235 cm)		112″ (285 cm)		
Depth	60″ (152 cm)		60″ (152 cm)		60″ (152 cm)		
Inlets	1" FNPT		1" FNPT		1" FNPT		
Outlets	Open Nozzle + ¾″ M	Male QD	Open Nozzle + ¾"	Male QD	Open Nozzle + ¾"	Open Nozzle + ¾" Male QD	
Filter Element Configuration	S75 Spin-On, S75D	S75 Spin-On, S75D Spin-On, MF3, MF90, MF110 and optional 2 stage systems available					
Seals	Fluorocarbon or Nit	trile (Buna)	Fluorocarbon or N	litrile (Buna)	Fluorocarbon or Ni	trile (Buna)	
ΔP Gages	Sliding, Pop-Up, Vis	sual 0-25 psid (1.7 ba	rd) available.				
Operating Pressure	150 psi (10 bar) maximum standard						
Operating Temperature	50°F to 100°F (10°C to 38°C)		50°F to 100°F (10°C to 38°C)		50°F to 100°F (10°C to 38°C)		
Materials of Construction	Reservoirs Industrial coated steel	Facing Industrial coated steel	Frame Powder coated steel	Grate Aluminum	Plumbing Plated steel hydraulic fittings + stainless tubing	Hoses Reinforced synthetic	
Reservoir Size	70 gal (265 liter), 15	0 gal (568 liter), 250	gal (946 liter) availa	able standard. Con	tact factory for addition	al sizes.	
Electric	cUL listed industria	cUL listed industrial control panels. All voltages available.					
Electric Motors	TEFC, 56-184 frame 0.5-1 hp, 1200-1500	RPM	TEFC, 56-184 frame 0.5-1 hp, 1200-1500 RPM		TEFC, 56-184 frame 0.5-1 hp, 1200-1500	e) RPM	
Motor Starter	MSP (motor starter,	MSP (motor starter/protector) with short circuit and overload protection.					
Pumps	Cast iron, positive of on pump inlet 15 ps	displacement gear p si (1 bar). Consult fac	ump with internal re ctory for higher pres	elief. Maximum pro ssures.	essure		
Pump Bypass	Full bypass at 150 p	osi (10 bar)²					
Media Description	$\begin{tabular}{l} M \\ G8 Dualglass, our latest generation \\ of DFE rated, high performance \\ glass media for all hydraulic & \\ lubrication fluids. $\beta x_{[C]} $\geq 4000 \\ \end{tabular}$		A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[C]} \ge 4000$		W Stainless steel wire media $\beta x_{[C]} \ge 2$ (βx	e mesh ≥ 2)	
Viscosity	10-5000 cSt						
Fluid Compatibility	Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetic fluids use fluorocarbon seal option or contact factory.						

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

LCSB/LCSW Specifications

Consult Factory for Part Numbers & Pricing

Model	LCSB			LCSW		
Height	70.5″ (179 cm)			60″ (152 cm)		
Width	32″ (81 cm)			27.5″ (70 cm)		
Depth	35″ (89 cm)			24" (61 cm)		
Inlets	1" FNPT			1" FNPT		
Outlets	Open Nozzle + ¾" I	Male QD		Open Nozzle + ¾" Male QD		
Filter Element Configuration	S75 Spin-On, S75D	Spin-On, MF3, MF9	0, MF110 and option	al 2 stage systems av	vailable	
Seals	Fluorocarbon or Ni	trile (Buna)	Fluorocarbon or Ni	trile (Buna)		
ΔP Gages	Sliding, Pop-Up, Vis	Sliding, Pop-Up, Visual 0-25 psid (1.7 bard) available.				
Operating Pressure	150 psi (10 bar) maximum standard					
Operating Temperature	50°F to 100°F 50°F to 100° (10°C to 38°C) (10°C to 38°C)		50°F to 100°F (10°C to 38°C)			
Materials of Construction	Facing Industrial coated steel	Frame Powder coated steel	Grate Aluminum	Plumbing Plated steel hydrau + stainless tubing	lic fittings	Hoses Reinforced synthetic
Electric	cUL listed industria	l control panels. All	voltages available.			
Electric Motors	TEFC, 56-184 frame 0.5-1 hp, 1200-1500	e PRPM	TEFC, 56-184 frame 0.5-1 hp, 1200-1500	e) RPM		
Motor Starter	MSP (motor starter/protector) with short circuit and overload protection.					
Pumps	Cast iron, positive displacement gear pump with internal relief. Maximum pressure on pump inlet 15 psi (1 bar). Consult factory for higher pressures.				ō psi (1 bar). Consult	
Pump Bypass	Full bypass at 150 p	osi (10 bar)²				
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. βx _{ICI} ≥ 4000		A G8 Dualglass high media combined w removal scrim. βx _ι	performance vith water _□ ≥ 4000	W Stainless steel wire media $\beta x_{[C]} \ge 2$ ($\beta x =$	e mesh ≥ 2)
Viscosity	10-5000 cSt					
Fluid Compatibility	Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetic fluids use fluorocarbon seal option or contact factory.					

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

*Barrel is not included.

hyprofiltration.com/

159

Custom Equipment

Application based contamination solutions tailored to meet your exact needs and exceed your expectations. Call Donaldson Hy-Pro for more information.

Super high viscosity.

Applications such as dragline mining require oils in excess of ISO VG 680 that were previously considered unfilterable. Across the mines of Canada for more than three years, our dragline optimized filter skids have been eliminating unplanned downtime and maintenance in fluids with viscosities as high as ISO VG 1500 and temperatures down to 0°C.

Overcrowded plants and streamlined vessels require careful consideration when integrating filtration systems. Engineered for maximum efficiency in minimal space, our filtration systems are designed to excel at maximizing your efficiency no matter the application or the space requirements.

Explosion proof and code certified.

Navigating the red tape of safety classifications can be a nightmare. Take the hassle out of your filtration with systems designed and built to meet the regulations of nearly any certifications required.

Extreme temperatures.

Whether you're removing varnish from turbine oil in the deserts of the Middle East or particulate from lube oil in the frozen tundra of the Arctic Circle, Donaldson Hy-Pro can integrate specialized cooling and heating with smart controls to tackle contamination in any environment. Gearboxes running too hot? Donaldson Hy-Pro can design and build a dual function solution to condition the oil and maintain your ideal operating temperature.

Mobile fluid handling.

Integrating fluid storage and mobility has never been easier with the ability to add reservoirs to any standard product line or a completely customized unit. Take clean fluids with you to top off reservoirs or completely replace discarded oil in as large of reservoirs as your heart desires.

Color coordinated to safety standards.

While we think Donaldson Hy-Pro Blue is the perfect color for our equipment, all of our units can be tailored to meet your existing safety and identification standards.

Filter Assembly Pressure Chart

Filter Assembly Pressure

High Pressure Assembly		PF2 PF4 PFH PFH62 PFH92 PFH840 PFHB	Max Operating Pressure: 4000 psi (275 bar) Max Operating Pressure: 6,000 psi (414 bar) Max Operating Pressure: 6090 psi (420 bar) Max Operating Pressure: 6,600 psi (455 bar) Max Operating Pressure: 6,000 psi (414 bar) Max Operating Pressure: 9137 psi (630 bar) Max Operating Pressure: 7250 psi (500 bar)
Medium Pressure Assembly		F8 MF3 MF90 MF110 MF480	Max Operating Pressure: 500 psi (34.5 bar) Max Operating Pressure: 1,200 psi (83 bar) Max Operating Pressure: 580 psi (40 bar) Max Operating Pressure: 435 psi (30 bar) Max Operating Pressure: 508 psi (35.1 bar)
Low Pressure Assembly	Denaldsu	LF(M) LFW S75-76	Max Operating Pressure: 150 psi (10 bar) Max Operating Pressure: 150 psi (10 bar) Max Operating Pressure: 200 psi (13.8 bar)
In-Tank Assembly		TF4 TFR3 TFR200 TFRC TFRB	Max Operating Pressure: 100 psi (6.9 bar) Max Operating Pressure: 150 psi (10 bar)
Duplex Filter Assembly		DLF(M) DFH DFN	Max Operating Pressure: 150 psi (10 bar) Max Operating Pressure: 3600 psi (248 bar) Max Operating Pressure: 888 psi (61.2 bar)

TF4 In-Tank Filter Assembly

Ideal for installation on the return line to remove contaminant ingested or generated by the system.

Max Operating Flow: 40 gpm (151 lpm) Max Operating Pressure: 100 psi (6.9 bar)

Elements that go beyond industry standard.

Donaldson Hy-Pro's DFE rated G8 dualglass elements are rated to assure performance even when exposed to the toughest conditions that hydraulic systems can generate. Designed to provide the best filtration and ease of use, the HP4C coreless element gives you more options for disposal, meaning you improve your environmental impact **and** your bottom line.

165

Works with your system.

Available with one or two inlet ports (180° orientation) for maximum flexibility of installation, you'll be amazed at how easily the TF4 integrates into your system. For applications requiring AIAG HF4 automotive standards compliance, the H4 special option incorporates the HPK filter element to ensure you meet compatibility requirements and exceed efficiency expectations.

Minimize the mess.

With most of the assembly inside the reservoir, the top loading housing on the TF4 provides easy and clean access when servicing or changing the element. To top it off, keyways on the twist open cover require only loosening of the bolts to access the element so lost parts during service becomes a thing of the past.

> 2.19 in [55.6 mm]

> 1.38 in [35.0 mm]

TF4 Installation Drawing

[222.9 mm] LENGTH WITHOUT DROP TUBE

LENGTH WITH DROP TUBE SEE TABLE

 4.37 in [111.1 mm]

The perfect fit.

Coming in at just over 7" (185 mm) in diameter, the TF4 is the perfect compact solution for keeping your mobile equipment or power units operating at peak performance. And with mounting patterns to fit both North American and European formats, you'll get clean oil and increased efficiency no matter where you are.

DropTube Option	Length including DropTube
4" Nominal Extension	14.3″ (363 mm)
6" Nominal Extension	16.3″ (414 mm)
8" Nominal Extension	18.3" (465 mm)
9" Nominal Extension	19.3" (490 mm)
10" Nominal Extension	20.3″ (516 mm)
12" Nominal Extension	22.3″ (566 mm)

TF4 Specifications

Dimensions	See Installation Drawings on page 161 for model specific dimensions.										
Operating Temperature	Fluid Tempe 30°F to 225° (0°C to 105°	Prature PF PC)			Ambient Ter -4°F to 140°F (-20C to 60C	Ambient Temperature -4°F to 140°F (-20C to 60C)					
Operating Pressure	100 psi (6.9	bar) maximum	1								
Pressure Switch Trigger	22 psi (1.5 b	ar)									
Element Collapse Rating	HP4CL9 150 psid (10).3 bard)			HPKL9 290 psid (20	bard)					
Integral Bypass Setting	25 psid (1.7	bard)									
Materials of Construction	HeadBowlCast aluminumPolyammide										
Media Description	M G8 Dualglas of DFE rated glass media lubrication	ss, our latest gø d, high perform a for all hydrau fluids. βx _[C] ≥ 4	eneration nance lic & 000	A G8 Dualglass h media combine removal scrim.	igh performance d with water βx _[C] ≥ 4000	W Stain medi	W Stainless steel wire mesh media $\beta x_{ C } \ge 2 \ (\beta x \ge 2)$				
Replacement Elements	To determine replacement elements, use corresponding codes from your assembly part r Configuration Filter Element Part Number Example Standard Filter Element HP4CL9 – [Media Selection Code] [Seal Code] HP4CL9–10AV Special Option H4 HPKL9 – [Media Selection Code] [Seal Code] HPKL9–6MB										
Fluid Compatibility	Petroleum a other specif	Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetic fluids use fluorocarbon seal option or contact factory.									
Filter Sizing ¹	Filter assem assembly b with extrem	bly clean elem ypass setting. S ne cold start co	nent ΔP after See page 22 ndition cont	r actual viscosity c for filter assembl act Donaldson Hy	orrection should y sizing guidelin -Pro for sizing re	I not exceed 10 es & examples commendation	9% of filter 5. For applicatio ns.	ns			
∆P Factors ¹	Units	Media 1M	3M	6M	10M	16M	25M	**W			
	psid/gpm bard/lpm	0.2370 0.0043	0.2000 0.0036	0.1550 0.0028	0.1390 0.0025	0.1360 0.0025	0.1310 0.0024	0.0240 0.0004			

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

TF4 Part Number Builder

TF4	Вура	ass Indicator	Special Options	Media Seal						
Connection	Port G20 N20 S20	Option 1.25" BSPT 1.25" NPT 1.25" SAE	Max 40 g 40 g 40 g	x Flow Rate pm (151 lpm) ¹ pm (151 lpm) ¹ pm (151 lpm) ¹						
Bypass	2	Integrated bypass - 2	5 psid (1.7 bard)							
Pressure Indicator	DX E G X	Electric pressure swi Electric switch with f Visual pressure gaug No indicator (port plu	tch (DIN connect ying leads (3-wi e ugged)	tion) re connection)						
Special Options	D2 ² H4 ³ 4 8 9 10 12	Dual inlet ports, 180° orientation HPK series element for automotive standards compatibility 4" (10 cm) nominal drop tube extension 6" (15 cm) nominal drop tube extension 8" (20 cm) nominal drop tube extension 9" (23 cm) nominal drop tube extension 10" (25 cm) nominal drop tube extension 12" (30 cm) nominal drop tube extension								
Media Selection	G8 C 1M 3M 6M 10M ³ 16M 25M	$\begin{array}{l} \beta \\ \beta $	G8 3A 6A 10A ³ 25A	Dualglass + water re $\beta 5_{[C]} \ge 4000$ $\beta 7_{[C]} \ge 4000$ $\beta 12_{[C]} \ge 4000$ $\beta 22_{[C]} \ge 4000$	moval S 2 4 7 1	tainless wire mesh 5W 25μ nominal 5W 40μ nominal 4W 74μ nominal 49W 149μ nominal				
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless	steel support m	iesh						

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Available with S4 port only. ³Replaces standard HP4C series element with HPKL9. Use 12M or 12A for respective media code in place of 10M or 10A.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

167

TFR3 In-Tank Filter Assemblies

Donaldson Hy-Pro TFR3 in-tank filter assemblies are ideal for particulate contamination removal at high flow rates in large hydraulic power units and mobile hydraulic OEM applications.

Max Operating Flow: 225 gpm (852 lpm) Max Operating Pressure: 150 psi (10 bar)

hyprofiltration.com/

Filtration starts with the filter.

Advanced DFE rated filter elements deliver lower operating ISO Codes with high efficiency particulate removal and retention efficiency. With a range of media options down to $\beta 3_{[c]} > 4000 +$ water absorbing options, you get the perfect element for your application, every time.

Inside to out flow.

The dirtiest fluid in you system can be found before the filter element in the filter housing. Here, contaminants collect in the filter media and unless disposed of properly, can wreak havoc on your system after element service. That's why when you service the TFR3 element, which utilizes inside-to-outside flow, you remove all the dirt and contaminated fluid with the element.

Integral element bypass.

TFR3 elements include an integral, zero-leak bypass valve. Every time an element is changed a new bypass is installed eliminating bypass valve fatigue and leakage over time.

Minimize the mess.

The top loading TFR3 housing provides easy and clean access during element service, no slippery spin-ons to handle. With the keyway cover and bolt arrangement, lost parts during element service become a thing of the past.

Sized for your system.

Choose from a range of different length elements and bypass valve settings to handle the flow rate and oil viscosity of your specific system.

Eliminate aeration.

Smaller reservoirs with higher turnover and less settling time typically lead to aeration as fluids are churned and recirculated. The unique TFR3 element design minimizes turbulence and integral diffuser tube prevents aeration in compact hydraulic and high velocity return line applications by maintaining a column of fluid outside the filter element and above the fluid line to ensure your fluids are returned clean and without aeration.

169

TFR3 Installation Drawings

TFR3 Installation Drawings

TFR Weld Flange Installation Drawing

TFR3 Installation Drawing

Series	TFR3
A	3/8" - 16 UNC-2A
В	8.31″ (21.1 mm)
С	1.00″ (25.4 mm)
D	6.67″ (169.4 mm)
E	6.75-7.25″ (171.5-184.2 mm)

(Hole in Reservoir)

hyprofiltration.com/

171

TFR3 Specifications

Operating	Fluid Tem	perature		Ambient	Temperature	e						
	30°F to 22	5°F		-4°F to 140°F								
Temperature	(0°C to 10	5°C)		(-20C to 6	50C)							
Operating	150 psi (1	0 bar) maxin	num									
Pressure												
Pressure	22 psi (1.5	i bar)										
Switch Trigger	45 psi (3.1	l bar)										
	0.00 : //											
Visual Gauge	0-22 psi (0 0-45 psi (0	0-45 psi (0-1.5 bar), green to red										
Element	100 psid (6.9 bard)										
Collapse Rating												
Integral	25 psid (1	7 bard) stan	dard. For 50 p	sid (3.4 bar	d) option, se	lect Bypass	Option "3" i	in Assembl	v			
	Part Num	ber Builder a	and add "-50" 1	to the end o	of Replaceme	ent Element	part numbe	r.	1			
Bypass Setting					-							
Materials of	Head			Diffuser			Elen	Element Bypass Valve				
Construction	Cast alum	linum		Powder of	Powder coated or plated steel				Plated steel			
	NA						10/					
Iviedia	G8 Duald	lass our late	st generation	A G8 Dualo	A VV G8 Dualglass high performance Staipless steel wire mesh							
Description	of DFE rat	ted, high per	formance	media co	mbined wit	h water	med	media $\beta x_{(c)} \ge 2$ ($\beta x \ge 2$)				
	glass med	dia for all hyd	draulic &	removal	scrim. βx _[C] ≥	≥ 4000		· [C]				
	lubricatio	n fluids. βx _{ιc}	_] ≥ 4000									
Replacement	To deter	r <mark>mine rep</mark> l	acement el	ements, ι	use corres	ponding o	codes fror	n your as	ssembly pa	rt number:		
Elements	Series	Bypass						Evonala				
		Code	Filter Element	Part Numb	oer	lie Celestiere	C	N	Example			
	3 APTER31 [Element Length Code] - [Media Selection Code][Seal Code] - 50 APTER31 [9-								-31VIE-VVS -3ME-W/S-50			
		5						5000] - 50		SIVIE-110-50		
Fluid	Petroleum	n and minera	al based fluids	(standard).	For polyol e	ester, phosph	hate ester, a	nd				
Compatibility	other spe	cined synthe	enc nuids use i	luorocarbo	n sear option	n or contact	factory.					
Filter Sizina ¹	Filter asse	embly clean	element ΔP aft	er actual vi	scositv corre	ection shoul	d not exceed	d 10% of fil	ter			
Tinter Sizing	assembly bypass setting. See page 22 for filter assembly sizing guidelines & examples. For applications											
	with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.											
<u> </u>												
∆P Factors ¹	Model	Length	Units	Media								
				1M	3M	6M	10M	16M	25M	**W		
	TFR3	L11	psid/gpm	0.1102	0.0930	0.0721	0.0646	0.0632	0.0609	0.0112		
			bard/lpm	0.0020	0.0017	0.0013	0.0012	0.0012	0.0011	0.0002		
		L15	psid/gpm	0.0834	0.0704	0.0545	0.0489	0.0479	0.0461	0.0084		
		110	bard/Ipm	0.0015	0.0013	0.0010	0.0009	0.0009	0.0008	0.0002		
		L19	psia/gpm bard/lpm	0.0088	0.0580	0.0450	0.0403	0.0395	0.0380	0.0070		
		L34		0.0398	0.0336	0.0260	0.0234	0.0228	0.0220	0.0040		
			bard/lpm	0.0007	0.0006	0.0005	0.0004	0.0004	0.0004	0.0001		

¹Max flow rates and ΔP factors assume β = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

TFR3 Part Number Builder

TFR3	Connection	Length Bypass	Indicator	Special Options	Media	Seal						
Connectio	on TFR: F40	3 2.5" Code 61 flange	Ma: 225	x Flow Rate gpm (852 lpm) ¹								
Element Length ²	TFR: 11 15 19 34	3 11" (28 cm) nominal 15" (38 cm) nominal 19" (48 cm) nominal) 34" (86 cm) nominal										
Bypass	2 3	Integrated bypass - 25 Integrated bypass - 50	5 psid (1.7 bar)) psid (3.4 bar)									
Pressure Indicator	DX E G X	Electric pressure switt Electric switch with fly Visual pressure gauge No indicator (port plug	Electric pressure switch (DIN connection) Electric switch with flying leads (3-wire connection) Visual pressure gauge No indicator (port plugged)									
Special Options	R ³ W	Exclude diffuser tube Reservoir weld flange										
Media Selection	G8 D 1M 3M 6M 10M 16M 25M	$\begin{array}{l} \beta \\ \beta $	G8 3A 6A 10A 25A	$\begin{array}{l} \text{Dualglass} + \text{v} \\ \beta 5_{[C]} \geq 4000 \\ \beta 7_{[C]} \geq 4000 \\ \beta 12_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \\ \end{array}$	vater remova	al St. 25\ 40\ 74\ 14s	ainless wire mes V 25μ nominal V 40μ nominal V 74μ nominal W 149μ nominal	sh				
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless s	steel support m	lesh								

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Improper length selection could result in reservoir foaming. Consider diffuser and element length and anticipated reservoir

fluid level when sizing. To protect against foaming, using longer lengths is recommended. *Excluding diffuser tube can result in reservoir foaming in high flow density applications.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

173

TFR2 In-Tank Filter Assemblies

Donaldson Hy-Pro TFR2 in-tank filter assemblies are ideal for particulate contamination removal in hydraulic power unit return line and mobile hydraulic OEM installations.

Max Operating Pressure: 150 psi (10 bar)

Filtration starts with the filter.

Advanced DFE rated filter elements deliver lower operating ISO Codes with high efficiency particulate removal and retention efficiency. With a range of media options down to $\beta 3_{[c]} > 4000$ + water absorbing options, you get the perfect element for your application, every time.

Inside to out flow.

The dirtiest fluid in you system can be found before the filter element in the filter housing. Here, contaminants collect in the filter media and unless disposed of properly, can wreak havoc on your system after element service. That's why when you service the TFR2 element, which utilizes inside-to-outside flow, you remove all the dirt and contaminated fluid with the element.

Integral element bypass.

TFR2 elements include an integral, zero-leak bypass valve. Every time an element is changed a new bypass is installed eliminating bypass valve fatigue and leakage over time.

Minimize the mess.

With most of the assembly inside the reservoir, the top loading TFR2 housing provides easy and clean access during element service, no slippery spin-ons to handle. With the keyway cover and bolt arrangement lost parts during element service become a thing of the past.

Compact and sized for your system.

With three head sizes, multiple connection sizes, filter element lengths and diffuser options to choose from, TFR2 assemblies smoothly deliver clean fluids back to tank with a design that keeps things compact.

Eliminate aeration.

Smaller reservoirs with higher turnover and less settling time typically lead to aeration as fluids are churned and recirculated. The unique TFR2 element design minimizes turbulence and integral diffuser tube prevents aeration in compact hydraulic and high velocity return line applications by maintaining a column of fluid outside the filter element and above the fluid line to ensure your fluids are returned clean and without aeration.

TFR Installation Drawings

TFR Installation Drawings

TFR Weld Flange Installation Drawing

Series	TFR2
A	3/8" - 16 UNC-2A
В	7.09″ (18.0 mm)
С	1.00″ (25.4 mm)
D	5.30″ (134.6 mm)
E	5.5-6.25″ (139.7-158.75 mm)

TFR2 Specifications

Dimensions	See Installation Drawings for model specific dimensions.											
Operating Temperature	Fluid Tem 30°F to 22 (0°C to 10	p erature 5°F 5°C)		Ambient -4°F to 14 (-20C to 0	Temperatur 40°F 60C)	e						
Operating	150 psi (1) bar) maxi	mum									
Pressure												
Pressure	22 psi (1.5	bar)										
Switch Trigger	45 psi (5.1	bai)										
Visual Gauge	0-22 psi (0-1.5 bar), green to red 0-45 psi (0-3.1 bar), green to red											
Element	100 psid (6.9 bard)										
Collapse Rating												
Integral Bypass Setting	25 psid (1 Part Num	.7 bard) sta ber Builder	ndard. For 50 p and add "-50"	sid (3.4 bard to the end c	d) option, se of Replacem	elect Bypass ent Element	Option "3" part numb	in Assembl er.	У			
Materials of Construction	Head Cast alum	inum		Diffuser Powder o	Diffuser Powder coated or plated steel				Element Bypass Valve Plated steel			
Media Description	M G8 Dualgl of DFE rat glass med lubricatio	ass, our lat ed, high pe lia for all hy n fluids. βx	est generation erformance ⁄draulic & _{c]} ≥ 4000	A G8 Dualg media co removal	A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[C]} \ge 4000$				\boldsymbol{W} Stainless steel wire mesh media $\beta \boldsymbol{x}_{_{[C]}} \geq 2~(\beta x \geq 2)$			
Replacement Elements	To deter Series Code	mine rep Bypass Code	lacement el Filter Elemen	ements, u t Part Numb	ments, use corresponding codes from you Part Number					ur assembly part number: Example		
	2 2 HPTFR2L[Element Length Code] – [Media Selection Code][Seal Code] HPTFR2L27–10AB 3 HPTFR2L[Element Length Code] – [Media Selection Code][Seal Code] – 50 HPTFR2L27–10AB–50									7–10AB 7–10AB–50		
Fluid Compatibility	Petroleum other spe	Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetic fluids use fluorocarbon seal option or contact factory.										
Filter Sizing ¹	Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.											
∆P Factors ¹	Model	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W		
	TFR2	L8	psid/gpm	0.2370	0.2000	0.1550	0.1390	0.1360	0.1310	0.0240		
		l 11	bard/lpm psid/gpm	0.0043	0.0036	0.0028	0.0025	0.0025	0.0024	0.0004		
			bard/lpm	0.0032	0.0027	0.0021	0.0019	0.0019	0.0018	0.0003		
		L18	psid/gpm bard/lpm	0.1009	0.0852	0.0660	0.0592	0.0579	0.0558	0.0102		

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

TFR2 Part Number Builder 179

TFR]_[]_				
Series	Conn	nection	Length	Bypass	Indic	ator	J [:	Special Options	s	Media	Seal		
Series	Serie 2	ries Max Flow Rate 1.5" maximum inlet 100 gpm (379 lpm) ¹											
Connection	TFR2 F24 G24 N24 S24	2 1.5″ Cc 1.5″ G 1.5″ NF 1.5″ SA	1.5″ Code 61 flange 1.5″ G thread (BSPP) 1.5″ NPT 1.5″ SAE										
Element Length ²	TFR2 8 11 18 27 39	2 8" (20 11" (28 18" (46 27" (69 39" (99	cm) nomina cm) nomir cm) nomir cm) nomir cm) nomir	al Ial Ial Ial Ial									
Bypass	2 ³ 3 ⁴	Integra Integra	ited bypass ited bypass	- 25 psid (1. - 50 psid (3.	7 bar) .4 bar)								
Pressure Indicator	DX E G X	Electric Electric Visual No ind	Electric pressure switch (DIN connection) Electric switch with flying leads (3-wire connection) Visual pressure gauge No indicator (port plugged)										
Special Options	R⁵ W	Exclude Reserv	e diffuser tu oir weld fla	be nge									
Media Selection	G8 D 1M 3M 6M 10M 16M 25M	$\begin{array}{l} \beta 3_{[C]} \geq \beta \\ \beta 5_{[C]} \geq \beta \\ \beta 7_{[C]} \geq \beta \\ \beta 7_{[C]} \geq \beta \\ \beta 12_{[C]} \geq \beta \\ \beta 22_{[C]} \geq \beta \\ 2 22_{[C]} \geq \beta \end{array}$	S 4000 4000 2 4000 2 4000 2 4000 2 4000		G8 3A 6A 10A 25A	$\begin{array}{l} \text{Dualgla}\\ \beta 5_{ C } \geq \\ \beta 7_{ C } \geq \\ \beta 12_{ C } \geq \\ \beta 22_{ C } \end{array}$	40 40 ≥ 4 ≥ 4	s + water r 00 00 000 000 000	en	noval	Stainless 25W 25μ 40W 40μ 74W 74μ 149W 149μ	s wire mesh nominal nominal nominal u nominal	
Seals	B V E-WS	Nitrile Fluoro EPR se	(Buna) carbon als + stainle	ess steel sup	oport m	lesh							

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Improper length selection could result in reservoir foaming. Consider diffuser and element length and anticipated reservoir

fluid level when sizing. To protect against foaming, using longer lengths is recommended. ³Standard Bypass Rating. Consult Donaldson Hy-Pro for alternate valve setting. ⁴When selected, add "-50" to end of replacement element part number.

⁵Excluding diffuser tube can result in reservoir foaming in high flow density applications.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

TFRB In-Tank Return Line Filter Assemblies

Donaldson Hy-Pro TFRB in-tank filter assemblies are ideal for mobile and industrial power unit hydraulic applications where the breather integrated into the filter head can save space to yield a compact solution.

Max Operating Flow: 70 gpm (265 lpm) Max Operating Pressure: 150 psi (10 bar)

Go beyond industry standard.

Advanced DFE rated filter elements deliver lower operating ISO Codes with high efficiency particulate removal and retention efficiency. With integral element bypasses and a range of media options down to $\beta 3_{lcl} > 4000 +$ water absorption, you get the perfect element for your application, every time.

Minimize the mess.

The top loading TFRB housing provides easy and clean access during element service – no slippery spin-ons to handle. A threaded cover allows for quick element changes with no special tools required. 181

Inside to out flow.

The TFRB housings utilizes an inside-to-outside element flow, meaning all the dirt captured by the element stays in the element during service. They don't release dirt back into the system with traditional outside-to-in element designs that re-contaminate hydraulic tanks during filter changes.

Dirt removal's never been so easy.

Packed with features including; easy service composite threaded cover, integral BTTRAP breather, industry standard 2-bolt and 4-bolt mounting patterns, additional auxiliary: inlet ports optional, integral element holddown / removal handle (no-spring), integral bypass (new bypass with every element change).

Eliminate aeration.

Smaller reservoirs, high return flow and high velocity through outside-to-in flow elements add up to tank turbulence and reservoir aeration with poor air release. TFRB prevents aeration by diffusing return flow and creating laminar conditions inside the hydraulic tank.

Breather incorporated.

With typical in-tank filters, a separate connection is required on the tank to add a breather. With the TFRB, the breather is incorporated right into the filter housing making it simpler and easier to add a breather to the system. Utilizing exclusive T.R.A.P. technology, the breathers remove both airborne moisture as well as 97% of particulate 3 micron and larger. Servicing the breather is tool-free and can be done in just seconds.

TFRB Sizing Guide

Filter Sizing¹ Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See page 4 for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

∆P Factors ¹	Series	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W
	TFRB	L8	psid/gpm	0.6049	0.5104	0.3956	0.3548	0.3471	0.3343	0.0612
			bard/lpm	0.0110	0.0093	0.0072	0.0065	0.0063	0.0061	0.0011
		L10	psid/gpm	0.4840	0.4085	0.3166	0.2839	0.2778	0.2676	0.0490
			bard/lpm	0.0088	0.0074	0.0058	0.0052	0.0051	0.0049	0.0009
		L13	psid/gpm	0.3629	0.3063	0.2374	0.2129	0.2082	0.2006	0.0367
			bard/lpm	0.0066	0.0056	0.0043	0.0039	0.0038	0.0037	0.0007
		L19	psid/gpm	0.2418	0.2041	0.1582	0.1418	0.1388	0.1337	0.0245
			bard/lpm	0.0044	0.0037	0.0029	0.0026	0.0025	0.0024	0.0004

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

TFRB Installation Drawings

DimenstionTable													
Length	gth L8 L10 L13 L19												
A	7.75 in	9.67 in	12.88 in	19.3 in									
	152.4 mm	245.6 mm	327.1 mm	490.2 mm									
В	11.5 in	13.42 in	16.63 in	23.05 in									
	292.1 mm	340.9	422.4 mm	585.5 mm									

183

5.51 in [140.0 mm] 4.49 in [113.9 mm]

TFRB Specifications

Operating Temperature	-20°F to 250°F (-29°C to 121°C)		
Operating Pressure	150 psi (10.3 bar) maximum		
Pressure Switch Trigger	22 psi (1.5 bar) 45 psi (3.1 bar)		
Visual Gauge	0-22 psi (0-1.5 bar), green to red 0-45 psi (0-3.1 bar), green to red		
Element Burst Rating	100 psid (6.9 bard)		
Integral Bypass Setting	25 psid (1.7 bard) Standard 50 psid (3.4 bard) Bypass Option "3" ir	n Assembly	
Materials of Construction	Head Cast aluminum	Cover and breather Nylon glass-filled	Element Bypass Valve Plated steel
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} \ge 4000$	A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} \ge 4000$	W Stainless steel wire mesh media $\beta x_{[C]} \ge 2$
Fluid Compatibility	Petroleum and mineral based fluids (st use fluorocarbon seal option or contac	tandard). For polyol ester, phosphate es ct factory.	ter, and other specified synthetic fluids
Replacement Elements	To determine replacement elemBypass CodeFilter Element Par2HP329L [Element I3HP329L [Element I	nents, use corresponding codes t Number Length Code] – [Media Selection Code][{ Length Code] - [Media Selection Code][{	from your assembly part number:Geal Code]HP329L19-3MBGeal Code] - 50HP329L19-3M-50

TFRB Part Number Builder

185	

TFRB						-	_		_
	Connection	Breather	Length	Bypass	ΔP Indicator	Special Options	Media	Seal	Bypass Option
Connectio	010 G16 ¹ G20 S16 ² S20	1" G thread 1-1/4" G thre 1" SAE thre 1-1/4" SAE	(BSPP) ead (BSPP) ad thread						
Breather	T X	T.R.A.P. Bre Blocked	ather						
Element Length	8 10 13 19	8" (20 cm) 10" (25 cm) 13" (33 cm) 19" (48 cm)	nominal) nominal) nominal) nominal						
Bypass	2 3	Integrated Integrated	bypass - 25 p bypass - 50 p	osid (1.7 bar) osid (3.4 bar)					
Pressure Indicator	V G DX E H X	Visual pop- Visual pres Electrical (I Electrical (I Electrical (I No indicato	-up sure gauge DIN 43650) 3 wire flying DIN 46248) or (port plugg	leads) ged)					
Special Options	A 2W 4W	Front auxili 2 bolt weld 4 bolt weld	iary ports 2x flange (for ι flange (reco	1/2", plugged use with auxi immended fo	l liary port hea or heads with	ds) out auxiliary p	ports)		
Media Selection	G8 [1M 3M 6M 10M 16M 25M	$\begin{array}{l} \begin{array}{l} \beta 3_{[C]} \geq 4000\\ \beta 4_{[C]} \geq 4000\\ \beta 6_{[C]} \geq 4000\\ \beta 6_{[C]} \geq 4000\\ \beta 11_{[C]} \geq 4000\\ \beta 16_{[C]} \geq 4000\\ \beta 16_{[C]} \geq 4000\\ \beta 22_{[C]} \geq 400 \end{array}$))) 0)0)0	G8 Du 3A 6A 10A 16A 25A	$\begin{array}{l} \beta alglass + w \\ \beta 4_{_{[C]}} \geq 4000 \\ \beta 6_{_{[C]}} \geq 4000 \\ \beta 11_{_{[C]}} \geq 4000 \\ \beta 16_{_{[C]}} \geq 4000 \\ \beta 22_{_{[C]}} \geq 4000 \end{array}$	ater remova	al	Stainless w 25W 25µ r 40W 40µ r 74W 74µ r 149W 149µ	ire mesh nominal nominal nominal nominal
Seals	B V E-WS	Nitrile (Bur Fluorocarb EPR seals +	na) on ⊦ stainless st	eel support n	nesh				

If G primary connection selected, aux ports G1/2.

²If S primary connection is selected, aux ports SAE-8.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

TFR1 In-Tank Return Line Filter Assemblies

Donaldson Hy-Pro TFR1 in-tank filter assemblies are ideal for particulate contamination removal in high velocity hydraulic power unit return line and compact mobile hydraulic OEM installations.

Max Operating Pressure: 150 psi (10 bar)

Inside to out flow.

The dirtiest fluid in your system can be found before the filter element in the filter housing. Here, contaminants collect in the filter media and unless disposed of properly, can wreak havoc on your system after element service. That's why when you service the TFR1 element, which utilizes inside-to-outside flow, you remove all the dirt and contaminated fluid with the element.

Dirt removal's never been so easy.

Included with each TFR1 element is a specially designed tool to make element removal easier than ever. Simply squeeze the tool into the top of the element and release to seat inside the endcap, then pull using the handle to remove both the filter and all of the dirt contained inside from your system.

Eliminate aeration.

Smaller reservoirs with higher turnover and less settling time typically lead to aeration as fluids are churned and recirculated. The unique TFR1 element design minimizes turbulence and integral diffuser tube prevents aeration in compact hydraulic and high velocity return line applications by maintaining a column of fluid outside the filter element and above the fluid line to ensure your fluids are returned clean and without aeration.

Elements that go beyond industry standard.

Advanced DFE rated filter elements deliver lower operating ISO Codes with high efficiency particulate removal and retention efficiency. With integral element bypasses and a range of media options down to $\beta 3_{lcl} > 4000 +$ water absorption, you get the perfect element for your application, every time.

Minimize the mess.

With most of the assembly inside the reservoir, the top loading TFR1 housing provides easy and clean access during element service – no slippery spin-ons to handle. Specially designed keyway cover and bolt arrangement mean lost parts during element service become a thing of the past.

TFR1 Sizing Guide 188

Filter Assembly Sizing

_

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See below for viscosity correction formula. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

	Step 1:	Calculate	ΔP coeffi	cient for a	actual vis	scosity				
	Using S	aybolt Un Actual Viscos	Actual Operating Actual Specific Gravity			Using Ce	entistokes Actu Vise	s (cSt) al Operating cosity¹ (cSt)	ı Ac	tual Specific Gravity
	Coefficien	t =	150		3	Coefficien	t	32		0.86
ΔP Factors ¹	Actual As	ssembly Clea	nbly Clean $\Delta P = Fletonomega $		X ΔP Coe	fficient (from	Step 1)	p 1) X Asser (fror		Factor able)
	TFR1	L6	psid/gpm	1M 0.5640	3M 0.4759	6M 0.3688	10M	16M 0.3236	25M	** W
		L8	psid/gpm bard/lpm	0.0103	0.0087 0.4090 0.0074	0.0067	0.0060	0.0059 0.2781 0.0051	0.0057 0.2679 0.0049	0.0010
		L11	psid/gpm bard/lpm	0.3379 0.0062	0.2852 0.0052	0.2210 0.0040	0.1982 0.0036	0.1939 0.0035	0.1868 0.0034	0.0342 0.0006

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula for viscosity change.

TFR1 Installation Drawings

hyprofiltration.com/

189

TFR1 Specifications 190

Operating	Fluid Temperature	Ambient Temperature
Temperature	(0°C to 105°C)	-4°F to 140°F (-20C to 60C)
Operating	150 psi (10 bar) maximum	
Pressure		
Pressure	22 psi (1.5 bar)	
Switch Trigger	45 psi (3.1 bar)	
Visual Gauge	0-22 psi (0-1.5 bar), green to red 0-45 psi (0-3.1 bar), green to red	
Element	100 psid (6.9 bard)	
Collapse Rating		
Integral	25 psid (1.7 bard) standard. For 50 psid (3.4 bard)	option, select Bypass Option "3" in Assembly Part Number Builder and
Bypass Setting	add "-50" to the end of Replacement Element part	number.
Materials of	Head Cast aluminum	
Construction	Diffuser Powder coated or plated steel	
	Element Bypass Valve Plated steel	
Media Description	$\ensuremath{\textbf{M}}$ G8 Dualglass, our latest generation of DFE rated, $\beta x_{_{[C]}} \geq 4000$	nigh performance glass media for all hydraulic & lubrication fluids.
	A G8 Dualglass high performance media combined	with water removal scrim. $\beta x_{_{[C]}} \geq 4000$
	$\ensuremath{\overline{\textbf{W}}}$ Stainless steel wire mesh media $\beta x_{_{[C]}} \geq 2 \; (\beta x \geq 2)$	
Fluid	Petroleum and mineral based fluids (standard). Fo	r polyol ester, phosphate ester, and other specified synthetic fluids

Compatibility

use fluorocarbon seal option or contact factory.

TFR1 Part Number Builder

TFR1	Connection	Length Bypass	Indicator	Special Options	Media	Seal	
Connecti	ON G16 G20 N16 S16 S20	1" G thread (BSPP) 1.25" G thread (BSPP) 1" NPT 1" SAE 1.25" SAE					
Element Length ²	6 8 11	6" (15 cm) nominal 8" (20 cm) nominal 11" (28 cm) nominal					
Bypass	2 ³ 3 ⁴	Integrated bypass - 25 Integrated bypass - 50	psid (1.7 bar) psid (3.4 bar)				
Pressure Indicator	DX E G X	Electric pressure switc Electric switch with fly Visual pressure gauge No indicator (port plug	h (DIN connect ing leads (3-wi ged)	tion) re connection)			
Special Options	R⁵ W	Exclude diffuser tube Reservoir weld flange					
Media Selection	G8 [1M 3M 6M 10M 16M 25M	$\begin{array}{l} \text{Dualglass} \\ \beta 3_{[C]} \geq 4000 \\ \beta 5_{[C]} \geq 4000 \\ \beta 7_{[C]} \geq 4000 \\ \beta 12_{[C]} \geq 4000 \\ \beta 17_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \end{array}$	G8 3A 6A 10A 25A	Dualglass + $\gamma_{\beta 5_{[C]}} \ge 4000$ $\beta 7_{[C]} \ge 4000$ $\beta 12_{[C]} \ge 4000$ $\beta 22_{[C]} \ge 4000$	water remo	val S 25 40 74 14	tainless wire mesh W 25μ nominal W 40μ nominal W 74μ nominal 9W 149μ nominal
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon B EPR seals + stainless s	teel support m	esh			

⁴When selected, add "-50" to end of replacement element part number.

⁵Excluding diffuser tube can result in reservoir foaming in high flow density applications.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Replacement	To det	termine replacement elements, use corresponding codes from you	ur assembly part number:
Elements	Bypass	CodeFilter Element Part Number	Example
	2 3	HPTFR1L[Element Length Code] – [Media Selection Code][Seal Code] HPTFR1L[Element Length Code] – [Media Selection Code][Seal Code] – 50	HPTFR1L6–6MV HPTFR1L6–6MV–50

LF(M) High Viscosity Filter Assemblies

Low pressure filter assemblies optimized for high flow hydraulic, high viscosity lube and heavily contaminated fuel applications.

Max Operating Pressure: 150 psi (10 bar) Available options up to 1000 psi (68.9 bar)

hyprofiltration.com/

Filtration starts with the filter.

The oversized coreless filter element in every LF delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.

193

Built for industrial use.

Constructed from heavy duty carbon steel (standard) or the optional 304 or 316 stainless steel, the LF filter housings are designed to excel in even the toughest industrial conditions. Multiround units go even further to provide increased capacity whether you're operating with incredibly high viscosity oils, extreme flow rates or need extended service intervals.

s, the

Setting the new standard.

Sampling and condition monitoring are no longer optional, they're a necessity. That's why every LF comes standard with sample ports and green to red true ΔP gages that indicate exact element condition at all times. With access to accurate system cleanliness conditions, you'll know exactly how well your filtration is performing.

Minimize the mess.

Top loading filter housings minimize the mess from element services and changes. And with the easy open swing bolt lid design, you'll be back to filtering your fluids without having to search for all those lost parts.

Seamlessly integrated into your systems.

Multiple connection options and port customization provide the flexibility to integrate LF directly into existing re-circulating or auxiliary side loop and dispensing lines to improve fluid cleanliness and optimize existing assets. Get filtration exactly where you need it without extra expense of installing new plumbing and electrical.

Element configuration & media options.

With media options down to $\beta 3_{|C|} > 4000$, insoluble varnish removal and water absorbing options, you get the perfect element for your application, every time. Element configurations include Donaldson Hy-Pro HP106 and HP107 coreless style elements with integral, zero-leak bypass valves. For those plants using 8314 style industry standard elements, the HP8314 offers an improved bypass valve design.

LF Installation Drawings

LFM Installation Drawings

Series	Number of Elements	Port Size	Vessel Diameter	A	В	С	D	E	F	G	Weight
LFM	3	2	16.0 in	19.1 in	8.4 in	10.4 in	12.4 in	29.0 in	74.0 in	37.0 in	337.0 lb
			40.6 cm	48.6 cm	21.3 cm	26.4 cm	31.4 cm	73.7 cm	187.9 cm	94.0 cm	153.0 kg
		3	16.0 in	20.1 in	8.4 in	10.4 in	12.4 in	29.0 in	74.0 in	37.0 in	357.0 lb
			40.6 cm	51.1 cm	21.3 cm	26.4 cm	31.4 cm	73.7 cm	187.9 cm	94.0 cm	162.0 kg
		4	16.0 in	22.6 in	8.4 in	10.4 in	12.4 in	29.0 in	74.0 in	37.0 in	367.0 lb
			40.6 cm	57.5 cm	21.3 cm	26.4 cm	31.4 cm	73.7 cm	187.9 cm	94.0 cm	167.0 kg
	4	2	18.0 in	19.1 in	7.9 in	12.0 in	12.4 in	31.0 in	79.0 in	37.0 in	422.0 lb
			45.7 cm	48.6 cm	20.1 cm	30.5 cm	31.4 cm	78.7 cm	200.6 cm	94.0 cm	192.0 kg
		3	18.0 in	20.1 in	7.9 in	12.0 in	12.4 in	31.0 in	79.0 in	37.0 in	442.0 lb
			45.7 cm	51.1 cm	20.1 cm	30.5 cm	31.4 cm	78.7 cm	200.6 cm	94.0 cm	201.0 kg
		4	18.0 in	22.6 in	7.9 in	12.0 in	12.4 in	31.0 in	79.0 in	37.0 in	453.0 lb
			45.7 cm	57.5 cm	20.1 cm	30.5 cm	31.4 cm	78.7 cm	200.6 cm	94.0 cm	206.0 kg
	9	3	24.0 in	20.1 in	7.5 in	16.7 in	12.4 in	37.0 in	81.5 in	37.0 in	734.0 lb
			61.0 cm	51.1 cm	19.1 cm	42.4 cm	31.4 cm	93.9 cm	207.0 cm	94.0 cm	333.0 kg
		4	24.0 in	22.6 in	7.5 in	16.7 in	12.4 in	37.0 in	81.5 in	37.0 in	744.0 lb
			61.0 cm	57.5 cm	19.1 cm	42.4 cm	31.4 cm	93.9 cm	207.0 cm	94.0 cm	338.0 kg
		6	24.0 in	23.9 in	7.5 in	16.7 in	12.4 in	37.0 in	81.5 in	37.0 in	759.0 lb
			61.0 cm	60.7 cm	19.1 cm	42.4 cm	31.4 cm	93.9 cm	207.0 cm	94.0 cm	345.0 kg

¹Dimensions are approximations taken from base model and will vary according to options chosen and customer sizing requirements.

hyprofiltration.com/

195

LF(M) Specifications

Dimensions	See Insta	ee Installation Drawing for model specific dimensions.													
Operating Temperature	Fluid Tem 30°F to 22 (0°C to 10	perature 25°F 5°C)					Ambient Te -4°F to 140' (-20C to 60	Ibient Temperature F to 140°F OC to 60C)							
Operating Pressure	150 psi (1	0 bar) stanc	lard, see Sp	ecial Optio	ons for ad	ditional	pressure ra	tings.							
Element Collapse Rating	HP105 150 psi (1	0.3 bar)	H 1!	P106 50 psi (10.3	bar)		HP107 150 psi (10	.3 bar)		HP8314 (/ 150 psi (1	All Codes) 0.3 bar)				
Integral Bypass Setting	HP106 – in element b 25 psid (1	itegral ypass .7 bard)	H el 50	HP107 – Integral element bypass 50 psid (3.4 bard)			HP8314 (Co Integral ho 25 psid (1.7	o de 82) – using byp ⁄ bard)	ass	HP8314 (0 Integral h 50 psid (3	HP8314 (Code 83) – Integral housing bypass 50 psid (3.4 bard)				
Materials of Construction	Housing Carbon st Optional 3	eel with inc 304/316 stai													
Media Description	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										VTM $\beta 0.9_{[c]} \ge 4000$ particulate, insoluble oxidation by-product and water removal media				
Replacement Elements	To determine replacement elements, use corresponding codes from y Element Type Code Filter Element Part Number 5 HP105L[Length Code] – [Media Selection Code][Seal Code] 6 HP106L[Length Code] – [Media Selection Code][Seal Code] 7 HP107L[Length Code] – [Media Selection Code][Seal Code]									Ir assembly part number: Example HP105L36–6AB HP106L18–10MV HP107L36–VTM710V					
	8X 82 85		HP8314 HP8314 HP8314	L[Length Co L[Length Co L[Length Co	ode] – [Me ode] – [Me ode] – [Me	edia Sele edia Sele edia Sele	ction Code] ction Code] ction Code]	Seal Code Seal Code Seal Code	.] .] .]	HP8314L3 HP8314L1 HP8314L3	9–25WV 6–12MB 9–16ME–\	ws			
Fluid Compatibility	Petroleun contact fa skydrol fl	n and miner actory for co uid (S9) cor	al based flu mpatibility npatibility s	uids, #2 dies with fluorc select fluid o	sel fuels (ocarbon s compatib	standaro eal optio ility from	d). For spec on. For phos n special op	ified synth sphate est stions.	netics er (P9) or						
Filter Sizing ¹	Filter asse assembly with extre	embly clean bypass set eme cold sta	element Δ ting. See pa art conditio	P after actu age 22 for fi n contact D	al viscosi ilter asser onaldson	ty correc mbly sizi Hy-Pro t	ction should ng guidelin for sizing re	l not exce es & exan comment	ed 10% o nples. Fo dations.	f filter r applicatic	ons				
∆P Factors ¹	Model	Length	Units	Media vтм	05M	1M	3M	6L	10M	16M	25M	**W			
	LF	16/18 36/39	psid/gpm bard/lpm psid/gpm	0.0628 0.0011 0.0440	0.0473 0.0009 0.0331	0.0463 0.0008 0.0324	8 0.0391 3 0.0007 4 0.0273	0.0303 0.0006 0.0212	0.0271 0.0005 0.0190	0.0266 0.0005 0.0186	0.0256 0.0005 0.0179	0.0046 0.0001 0.0032			
	LFM3	36/39	psid/gpm	0.0008	0.0006	0.0008	0.0005	0.0004	0.0003	0.0003	0.0003	0.0001			
	LFM4	36/39	psid/gpm	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001			
	Model	Length	Units	Media 1A	3A	6A	10A	16A	25A	0.0001	0.0001	0.00005			
	LF	16/18	psid/gpm bard/lpm	0.0514	0.0434	0.0336	6 0.0302 6 0.0005	0.0295	0.0284						
		36/39	psid/gpm	0.0360	0.0304	0.0235	0.0211	0.0207	0.0199						
	LFM3	36/39	psid/gpm	0.0007	0.0006	0.0004	6 0.0004 6 0.0040	0.0004	0.0004						
		36/30	bard/lpm	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001						
		30/33	bard/lpm	0.0001	0.0043	0.0040	0.0000	0.00033	0.0029						

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

LF(M) Part Number Builder

197

LF]_			-							
	Series	C	Connection	Element Type	Element Length	ΔP Indicator	_	Special Options		Media] [5	Seal					
Series		Num omit M3 M4 M9 M14 M22 M38	hber of E 1 elemer 3 elemer 4 elemer 9 elemer 14 eleme 22 elemer 38 elemer	lements ht hts hts hts ents ents ents ents	Max 200 gg 600 gg 800 gg 1800 g 2800 g 2800 g 4400 g 7600 g	Flow Rate om (757 lpm om (2271 lpr om (3028 lpr gpm (6814 lp gpm (10,600 gpm (16,656 gpm (28,769) ¹ n) ¹ n) ¹ om) Ipr Ipr Ipr	1 n)1 n)1 n)1									
Connec	A22" ANSI flange - 150# standardA33" ANSI flange - 150# standardA44" ANSI flange - 150# standardA66" ANSI flange - 150# standardA8*8" ANSI flange - 150# standardA10*10" ANSI flange - 150# standardD2DN50 DIN flange - PN16 standardD3DN80 DIN flange - PN16 standardD4DN100 DIN flange - PN16 standardD6DN150 DIN flange - PN16 standardD7DN50 DIN flange - PN16 standard									DN200 D DN250 D 2" Code 3" Code 2" G thre 3" G thre 2" NPT 3" NPT 4" NPT 2" SAE th	IN flan IN flan 61 flan 61 flan 61 flan ad (BS ad (BS	ge – PN ge – PN ge ge PP) PP) d O-ring	J16 st J16 st g bos	tanda tanda	ard ard		
Elemer Type	nt	5 6 7	HP105 – HP106 – HP107 –	no bypass 25 psid (1.7 b 50 psid (3.4 b	bas: bas	8 s 8 s 8	8X 82 85	HP8314 - HP8314 - HP8314 -	no by 25 psi 50 psi	pass d (1.7 b d (3.4 b	oard) bard)	integ integ	gral hou gral hou	ising byp Ising byp	ass ass		
Elemer Length	nt	18 ³ 36 ³	L18 singl L36 singl	le length filte le length filte	ient 1 ient 3	6 ³ 9 ³	L16 singl L39 singl	e lengt e lengt	h filter h filter	hous hous	sing a sing a	and cor and cor	eless eler eless eler	ment ment			
∆P Indi	cator	D E F G	22 psid v 22 psid v 45 psid v 45 psid v	risual gauge - risual gauge risual gauge - risual gauge	+ electric swit + electric swit	ich ich		F J P X	1 	65 psid v switch (e 65 psid v 2 pressu None (pc	isual g ements isual g re gage orts plu	auge + 5 or 8X auge (e es (indu gged)	elect only) eleme istrial	tric ents ! I liqu	5 or 8X uid filled	only) I)	
Special Options	a) omit 150 psi (10.3 bar) max operating F pressure, carbon steel S G Filter element ΔP gauge with tattle tale follower ne P94 Spill retention pan with fork guides (industrial coated st S15 Phosphate ester fluid compatibility modification S25 150 psi (10.3 bar) max oper. pressure, 304 stainless st S35 250 psi (17.2 bar) max oper. pressure, 204 stainless st							Seedle L steel) V steel Y teel steel	64⁵ 69° J1 V (1000 psi (Skydrol f U Code (/ Automat 250 psi (1 450 psi (3	68.9 bai luid co ASME L ic air bl 7.2 bar) 1.0 bar)	r) max o mpatib J code c leed val max op) max op	oper. p pility r certific lve per. p per. p	press modi ied) pressi press	sure, 304 ificatior ure, cark ure, cark	stainless boon steel boon steel	steel
Media Selectio	on	G8 D 05M 1M 3M 6L 10M ⁷ 16M 25M	$\begin{array}{c} \beta 0.9_{ C } \geq 4\\ \beta 3_{ C } \geq 40\\ \beta 3_{ C } \geq 40\\ \beta 5_{ C } \geq 40\\ \beta 7_{ C } \geq 40\\ \beta 12_{ C } \geq 4\\ \beta 17_{ C } \geq 4\\ \beta 22_{ C } \geq 4\end{array}$	4000 100 100 100 100 1000 1000	G 14 34 64 10 16 25	8 Dualglas $\beta \beta_{(c)} \ge 4$ $\beta \beta_{(c)} \ge 4$ $\beta 7_{(c)} \ge 4$ $A^7 \beta 12_{(c)} \ge 4$ $A \beta 16_{(c)} \ge 4$ $A \beta 16_{(c)} \ge 4$ $\beta 22_{(c)} \ge 4$	S + 000 000 400 400 400	- water))))) 0) 0	r rem	noval	St 25\ 40\ 74\ 149	ainless W 25µ W 40µ W 74µ 9W 149	s wir 1 nom 1 nom 1 nom 1µ noi	re m ninal ninal ninal mina	al		
		VTM7	10 ⁸ 0.9 _[C]	∣≥ 4000 partio	culate, insolu	ble oxidatio	n b	y-produ	uct ar	d water	remova	al media	а				
Seals		B V E-WS	Nitrile (B Fluoroca EPR seal	una) rbon s + stainless	steel support	mesh					·					- f th- "	

⁸Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length Code 18 or 36. Length Codes 16 and 39 only compatible with HP8314 element. ⁹When selected, must be paired with Seal option "V" Contact factory for more information or assistance in fluid compatibility. ⁹Lid closure hardware is plated carbon steel.

When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

⁷For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A.

⁸Only available on HP107 series elements. Max recommended flow rate 16 gpm (60 lpm) for HP107L36-VTM710* elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements. Not available in single element configurations.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

LFW Wall Mounted Filter Assemblies

A compact, dedicated off-line contamination solution ideal for small reservoirs, gearboxes and diesel engine crankcase conditioning. Coming in at a whopping 0 ft² of floor space, the LFW is designed to get your filtration off the ground and positioned conveniently for you, whether you're polishing off that high viscosity gearbox oil or just want to add a little more protection for your critical components from heavy contaminants. And with Donaldson Hy-Pro filter elements inside, the possibilities are endless for what you can do with the LFW.

Max Operating Pressure: 150 psi (10 bar) Available options up to 250 psi (17.2 bar)

hyprofiltration.com/

Donaldson

HY-PRO

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $3_{[c]} > 4000 +$ water absorption and integral element bypass valves, you get the perfect element for your application, every time.

User friendly on a whole new scale.

With everything you need together in one tiny little package, LFW service and operation couldn't be easier. From the top loading housing to the sample ports, the LFW is built to match powerful filtration with your convenience. And with the easy-open swing bolt enclosure, worrying about lost parts during service becomes a thing of the past.

On board fuel filter upgrade.

New diesel engine fuel cleanliness requirements for high pressure injectors call for higher efficiency filters, rendering your existing on-board filters too small. The LFW element is sized just right and with available water absorbing media options, you'll get clean, dry fuel and the knowledge that your diesel engines are running more efficiently than ever.

LFW Installation Drawing

LFW Specifications 200

Dimensions	See Installation Drawings on model specific dimensions.													
Operating Pressure	150 psi (10	150 psi (10 bar) maximum standard.												
Operating Temperature	Fluid Temp 30°F to 225 (0°C to 105°	erature °F °C)				Amb -4°F 1 (-200	ient Tempera to 140°F to 60C)	iture						
Materials of Construction	Vessel Carbon ste	Vessel Element Bypass Valve Carbon steel with industrial coating Nickel plated steel												
Media Description	M G8 Dualgla generation rated, high glass medi- hydraulic 8 fluids. βx _{ici}	ss, our latest of DFE performance a for all k lubrication ≥ 4000	A G8 Du perfor combi remov	alglass high mance media ned with wate al scrim. $βx_{c]}$	er ≥ 4000	VTM β0.9 insol by-pr remo	_{cl} ≥ 4000 par uble oxidatio roduct and w wal media	ticulate, on vater	W Stainless stee media $\beta x_{[C]} \ge 2$	l wire mesh 2 (βx ≥ 2)				
Replacement Elements	To detern Element Ty 6 7	nine repla pe Code	cement ele Filter I HP106 HP107	ements, use Element Part I L10 – [Media S L10 – [Media S	e corres Number Selection Selection	Spond Code] Code]	ling codes [Seal Code] [Seal Code]	from yo	ur assembly Example HP106L10-10A HP107L10-3M	part number: \B V				
Fluid Compatibility	Petroleum contact fac skydrol flui	and mineral tory for comp id (S9) compa	based fluids, patibility with atibility selec	#2 diesel fuel n fluorocarbor t fluid compat	s (standa i seal opt ibility fro	ard). Fo ion. Fo om spe	or specified s or phosphate cial options.	ynthetics e ester (P9) o	or					
Filter Sizing ¹	Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See previous page for filter assembly sizing guidelines. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.													
∆P Factors ¹	Units	Media vtm	1M	Л 3M 6L			10M	16M	25M	**W				
	psid/gpm bard/lpm	0.1700 0.0031	0.1670 0.0030	0.0980 0.0018	0.060 0.00	00 11	0.0390 0.0007	0.0250 0.0005	0.0200 0.0004	0.0160 0.0003				

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

LFW Part Number Builder

	n Ele	ment Type	Indicator	Special Options	-	• Media	Seal				
Connection	Port G12 J12 N12	Option ¾" G thr ¾" male ¾" FNPT	read (BSPP) JIC with 37	° flare	Max F 25 gpm 25 gpm 25 gpm	Flow Rate 1 (95 lpm) ¹ 1 (95 lpm) ¹ 1 (95 lpm) ¹					
Element Type	6 7	HP106 co HP107 co	oreless elem oreless elem	ient, 25 p ient, 50 p	sid (1.7 sid (3.4	bard) integ bard) integ	ral element l Iral element l	bypass bypass			
∆P Indicator	D E F G P	22 psid v 22 psid v 45 psid v 45 psid v 2 pressu	visual gauge visual gauge visual gauge visual gauge re gages (in	+ electric + electric dustrial li	c switcł c switcł iquid fil	ו ו led)					
Special Options	F P9 ² S2 S9 ³ W	Filter ele Phospha 51" (130 Skydrol Automat	ement ΔP ga ite ester flui cm) Mount fluid compa tic air bleed	uge with d compat ing stand tibility me valve	tattle ta ibility n – ships odificat	ale follower nodificatior s fully asser ion	needle n nbled				
Media Selection	G8 D 0.5M 1M 3M 6L 10M 16M 25M	$\begin{array}{l} \beta \textbf{Ualglass}\\ \beta \textbf{0.9}_{ \text{C} } \geq 4 \\ \beta \textbf{3}_{ \text{C} } \geq 4 \textbf{0}\\ \beta \textbf{5}_{ \text{C} } \geq 4 \textbf{0}\\ \beta \textbf{7}_{ \text{C} } \geq 4 \textbf{0}\\ \beta \textbf{12}_{ \text{C} } \geq 4 \\ \beta \textbf{17}_{ \text{C} } \geq 4 \\ \beta \textbf{22}_{ \text{C} } \geq 4 \end{array}$	S 4000 000 000 000 4000 4000 4000				G8 [3A 6A 10A 25A	Dualg $\beta 5_{c}$ $\beta 7_{c}$ $\beta 12_{c}$ $\beta 22_{c}$	lass + water rem ≥ 4000 ≥ 4000 ≥ 4000 ≥ 4000	noval	
	VTM VTM7	10 ⁴ β0.9 _{լ0} by-pr	_{c]} ≥ 4000 par oduct and v	ticulate, i vater rem	insolub oval m	le oxidatior edia	Stair 25W 40W 74W 149W	nless v 25μ r 40μ r 74μ n 74μ	vire mesh nominal nominal nominal nominal		
Seals	B V E-WS	Nitrile (E Fluoroca EPR seal	Buna) Irbon Is + stainless	s steel su	pport m	nesh					

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ³When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ³When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

⁴Only available on HP107 series elements. Max recommended flow rate 4 gpm (15 lpm) for HP107L10-VTM710* elements.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

201

Donaldson Hy-Pro low pressure S series filters are designed for installation on the return line to remove contaminant ingested or generated by the system. Functions include off-line filtration (kidney loop or filter cart) and some suction applications.

Ideal for automotive manufacturing and assembly machine tools, mobile applications such as waste haulers and transit, filter carts and filter panels, and power unit return line/suction.

Max Flow Rate: 300 gpm (1,136 lpm)

Max Operating Pressure: 200 psi (13.8 bar)

Media matters.

DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $\beta 3_{[C]} \ge 4000$ or $\beta 5_{[C]} \ge 4000$ + water removal, you can be sure contamination stays exactly where you want it: out of your fluid.

Donaldson. FILTER ELEMENT HY:PRO MUERSON, IN 317-849-355 B11[c]≥ 4000 (ISO 16889) HP75L8-12AB WATER REMOVAL

Multiple configurations.

With a variety of connection types and sizes, mounting options, pressure indicators, media options and sample ports, there is a Spin-On assembly to meet the needs for almost any application.

Double duty.

S75D assemblies pack double the punch using two Donaldson Hy-Pro Spin-Ons in a parallel flow arrangement. Ideal for high flow or high viscosity applications, these assemblies offer unmatched filtration surface area in a compact size.

S75 Installation Drawing

S75D Installation Drawing

S76 Installation Drawing

203

S75-76 Specifications

Dimensions	See Insta	ee Installation Drawings on for model specific dimensions.												
Operating Temperature	Fluid Tem 30°F to 22 (0°C to 10	Fluid Temperature Ambient Temperature 30°F to 225°F -4°F to 140°F (0°C to 105°C) (-20C to 60C)												
Operating Pressure	200 psi (1	13.8 bar) ma	IX											
∆P Indicator Trigger	22 psi (1.!	5 bar) or 44	psi (3.0 bar)											
Element	100 psid	(6.9 bard) m	iax											
Collapse														
Materials of Construction	Head Cast alun	ninum	Ca Sta	n amped steel		Elemen Nylon	t Bypass Val	ve E Z c	lement End C inc or Tin coa arbon steel	;aps ited				
Media Description	M G8 Dualg of DFE ra glass me lubricatic	Λ A W 38 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & ubrication fluids. $\beta x_{[C]} \ge 4000$ Stainless steel wire mesh media combined with water removal scrim. $\beta x_{[C]} \ge 4000$												
Replacement Elements	To dete Series S75 S75D S76	To determine replacement elements, use corresponding codes from your assembly part numlSeriesFilter Element Part NumberExample\$75HP75L[Length Code] – [Media Selection Code] [Seal Code]HP75L4-25MV\$75DHP75DL[Length Code] – [Media Selection Code] [Seal Code]HP75DL8-12AB\$76HP76L[Length Code] – [Media Selection Code] [Seal Code]HP76L8-3MB												
Fluid Compatibility	Petroleur other spe	Petroleum and mineral based fluids (standard). For polyol ester, phosphate ester, and other specified synthetic fluids use fluorocarbon seal option or contact factory.												
Filter Sizing ¹	Filter ass setting. F	embly clear or application	n element ΔP ons with ext	e after actual reme cold st	viscosity co art conditio	orrection sho on contact Do	ould not exc onaldson Hy	eed 10% of f -Pro for sizin	ilter assembly ig recommen	y bypass dations.				
∆P Factors ¹	Series	Length	Units	Media 1M	3M	6M	12M	16M	25M	**W				
	S75	L4	psid/gpm	0.332	0.280	0.217	0.195	0.190	0.183	0.033				
		L8	pard/ipm	0.006	0.005	0.004	0.004	0.003	0.003	0.001				
			bard/lpm	0.003	0.003	0.002	0.002	0.002	0.002	0.000				
	S75D	L4	psid/gpm	0.166	0.140	0.108	0.097	0.095	0.092	0.017				
		18	bard/Ipm	0.003	0.003	0.002	0.002	0.002	0.002	0.000				
		20	bard/lpm	0.002	0.001	0.000	0.004	0.001	0.001	0.000				
	S76	L4	psid/gpm	0.573	0.484	0.375	0.336	0.329	0.317	0.057				
			bard/lpm	0.010	0.009	0.007	0.006	0.006	0.006	0.001				
		L8	psid/gpm bard/lpm	0.310	0.261	0.203	0.182	0.1/8	0.1/1	0.031				
	Series	Length	Units	Media	0.005	0.004	0.003	0.003	0.003	0.001				
	67 5	1.4	noid/anm	3A 0.211	6A	12A	25A	<u>3C</u>	<u> </u>	25C				
	3/5	L4	psia/gpm bard/lpm	0.311	0.241	0.216	0.204	0.448 0.008	0.292	0.284 0.005				
		L8	psid/gpm	0.172	0.133	0.119	0.113	0.247	0.161	0.157				
			bard/lpm	0.003	0.002	0.002	0.002	0.005	0.003	0.003				
	S75D	L4	psid/gpm	0.156	0.121	0.108	0.102	0.224	0.146	0.142				
		1.0	bard/lpm	0.003	0.002	0.002	0.002	0.004	0.003	0.003				
		LŎ	psid/gpm bard/lpm	0.086	0.067	0.060	0.056	0.124	0.081	0.078				
	S76	L4	psid/apm	0.533	0.413	0.370	0.349	0.774	0.505	0.491				
		·	bard/lpm	0.010	0.008	0.007	0.006	0.014	0.009	0.009				
		L8	psid/gpm	0.288	0.223	0.200	0.188	0.418	0.273	0.265				
			bard/lpm	0.005	0.004	0.004	0.003	0.008	0.005	0.005				

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula for viscosity change.

S75-76 Part Number Builder

S					_]_				
Series	Connection	Element Bypa Length	ass ∆P Ind	licator	Special Options	Media	I	Seal		
Series	Seri 75 75D 76	es HP75 Series Filter F HP75 Series Filter F HP76 Series Filter F	Element, single Elements, dout Element, single	e head ble head e head	d	Max 50 gj 100 g 30 gj	x Flow pm (189 gpm (37 pm (111	/ Rate 9 lpm) ¹ 79 lpm) ¹ lpm) ¹		
Connection	S75 B20 N20 S20	1¼″ BSP 1¼″ NPT 1¼″ SAE, 1 ″ - 12		S75I F32 N24 S24	D 2″ Code 61 1 1½″ NPT 1½″ SAE, 1	flange ″ - 12		S76 B12 N12 N16 S12	34" BSP 34" NPT 1" NPT 34" SAE	, 1 ¹ /16″ - 12
Element Length	4 8	4″ (10 cm) nominal 8″ (20 cm) nomina	l length filter e l length filter e	lement lement	:					
Bypass	02 ² 2 3 X	3 psid (0.2 bard) 25 psid (1.7 bard) 50 psid (3.4 bard) No bypass								
∆P Indicator	C DX ³ E G V ⁴ X	Electrical pressure Electrical pressure Visual pressure gas Visual ΔP indicator No indicator (port p	switch (DIN Co switch 3-Wire uge (sliding green blugged)	onnecto to red)	or)					
Special Options	S	Oil sampling port or	n filter head							
Media Selection	G8 [1M 3M 6M 12M 25M	$\begin{array}{l} \text{Dualglass} \\ \beta 3_{[\text{c}]} \geq 4000 \\ \beta 5_{[\text{c}]} \geq 4000 \\ \beta 7_{[\text{c}]} \geq 4000 \\ \beta 12_{[\text{c}]} \geq 4000 \\ \beta 22_{[\text{c}]} \geq 4000 \end{array}$	G8 Du 3A βε 6A β7 12A β1 25A β2	$\begin{array}{l} \text{alglass} \\ 5_{[C]} \ge 40 \\ 7_{[C]} \ge 40 \\ 12_{[C]} \ge 40 \\ 22_{[C]} \ge 4$	6+water rem 00 00 000 000 000	noval	Cellul 3C β 10C β 25C β	OSE 35 _[C] ≥ 5, β3 312 _[C] ≥ 5, β 325 _[C] ≥ 5, β2	} ≥ 5 12 ≥ 5 25 ≥ 5	Stainless wire mesh25W25μ nominal40W40μ nominal74W74μ nominal149W149μ nominal
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon ⁶ EPR seals + stainle	ss steel suppo	rt mesh	1					

Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. Not available with the S76 series. Only available with "G" or "X" indicator option.

³DX option only available on 25psi, 50psi and No Bypass ⁴Only available with S75/S75D, Bypass Option "2" - 25 psid (1.7 bard) & 50 psid (3.4 bard). ⁵Only available with filter element HP75L8-3M

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

HY-PRO

F8 Medium Pressure Filter High Flow Filter Assembly

Ideal for high viscosity lubricating fluids, high flow hydraulic, and heavily contaminated fuel applications. Drop-in mounting interchange for common pulp and paper industry 8300/8310/8314 filter assemblies.

Max Flow Rate: 300 gpm (1,136 lpm)

Max Operating Pressure: 500 psi (34.5 bar)

Filtration starts with the filter.

Advanced DFE rated filter elements deliver lower operating ISO Codes with high efficiency particulate removal and retention efficiency. With a range of media options down to $\beta 3_{[c]} > 4000 +$ water absorbing options, you get the perfect element for your application, every time.

Minimize the mess.

The top loading housing on F8 filter assemblies provide easy and clean access when servicing or changing the element. Accessing the element is as simple as removing the housing cover, meaning you have no heavy bowl to lift and can get back in operation more quickly than ever.

Setting the new (industry) standard.

Designed as a drop-in replacement for industry standard 8300 series filter housings, only the F8 from Donaldson Hy-Pro gives you the flexibility to choose from numerous DFE rated filter arrangements. Even upgrade your existing 83** series filter elements with the HP107 series to get a new integral bypass valve with every filter.

[Ø184.6 mm]

M1 Option Mounting Stand VISUAL AP INDICATOR 15.24 in 7.31 in [387.2 mm] TORQUE: HAND TIEGHTEN TO SEAL [185.7 mm] VENT PORT 13.22 in 4x Ø .53 in [335.9 mm] Thru 11.5 in [292.1 mm] 9.5 in 7.25 in [241.3 mm [184.2 mm] 11.48 in _ 5.21 in [291.7 mm] 8x Ø .41 in [132.4 mm] Thru 2 in 4 in [50.8 mm] [101.6 mm] 5 in 6.5 in (L36/L39) [127 mm] 6.5 in 47.48 in [165.1 mm] [165.1 mm] [1205.9 mm] 4.13 in ELEMENT REMOVAL [104.8 mm] 15.24 in 11.5 in . CLEARANCE + 40.00" 4x 1/2-13 UNC [387.2 mm] [292.1 mm] 2" / 2.5" CODE 61 FLANGE (OUTLET PORT) 2 in [50.8 mm] (L16) ELECTRICAL ΔP INDICATOR 25.48 in M2 Option Stabilizing Bracket [647.3 mm] ELEMENT REMOVAL CIEARANCE + 18.00'2" / 2.5" 10.38 in 1.02 in CODE 61 ELANGE [263.6 mm] 49 in [26 mm] VENT PORT (INLET PORT) [12.4 mm] 3/4' - 16 UNF THD (SAE-8) 1.02 in .51 in [13 mm] [26 mm] ò 9.34 in DRATN PORT 2.44 in [237.1 mm] 1.5 in 8.25 in [62 mm] [38.1 mm] [209.6 mm] Ø .34 in [Ø8.7 mm] Ø 7.27 in

F8 Installation Drawing

F8 Specifications

Dimensions	See Installa	tion Drawings	s for model	specific dimen	nsions.							
Operating Temperature	-20°F to 250 (-29°C to 12)°F 1°C)										
Operating Pressure	500 psi (34.	5 bar) max										
∆P Indicator Trigger	15 psi (1 ba 35 psi (2.4 b	r): 25 psid by par): 50 psid b	bass ypass + noi	ו bypass								
Materials of Construction	Head/Lid Cast alumin	um (coated)				Bowl Industrial coate	d steel					
Media Description	M G8 Dualglas generation high perform media for a lubrication	$ \begin{array}{ c c c c c } \hline M & A & W & VTM \\ \hline G8 \ Dualglass, our latest \\ generation of DFE rated, \\ high performance glass \\ media for all hydraulic & \\ lubrication fluids. \\ \beta x_{[c]} \geq 4000 \end{array} $										
Replacement Elements	To determine replacement elements, use corresponding codes from your assembly part numberElement Type CodeFilter Element Part NumberExample5HP105L[Length Code] – [Media Selection Code][Seal Code]HP105L36–6AB6HP106L[Length Code] – [Media Selection Code][Seal Code]HP106L16–10MV7HP107L[Length Code] – [Media Selection Code][Seal Code]HP107L36–1MV											
	32 35		HP831 HP831	0L[Length Code 0L[Length Code	e] – [Media e] – [Media	Selection Code] Selection Code]	[Seal Code] [Seal Code]	HP8310L16 HP8310L39	–25AV –3MB			
	8X 82 85		HP831 HP831 HP831	4L[Length Cod 4L[Length Cod 4L[Length Cod	e] – [Media e] – [Media e] – [Media	Selection Code Selection Code Selection Code	[Seal Code] [Seal Code] [Seal Code]	HP8314L39 HP8314L16 HP8314L39	–25WV –12MB –16ME–WS			
Fluid Compatibility	Petroleum a and other s	and mineral b pecified synth	ased fluids, ietic fluids u	#2 diesel fuels use fluorocarbo	s (standard on seal opt). For polyol estion or contact f	ter, phosphate actory.	e ester,				
Filter Assembly	Filter assen setting. For	nbly clean ele applications	ement ∆P at with extre	ter actual visc me cold start c	cosity corre	ection should n ontact Donalds	ot exceed 10 son Hy-Pro fo	% of filter as or sizing reco	sembly bypass mmendations.			
Sizing ¹	Step 1: Ca	alculate ΔP o	coefficient	for actual v	iscosity							
	Using Sayt	Actual Op Viscosity	Seconds (S perating 1 (SUS) X	Actual Spec Gravity	or	Using Centistokes (cSt) Actual ΔP = Visco		rating (cSt)	Actual Specific Gravity			
	Coemcient	15	0	0.86		Coemcient	32		0.86			
	Step 2: Ca	alculate actu	ial clean f	ilter assemb	ly ∆P at b	ooth operatin	g and cold	start viscos	sity			
	Actual Assembly Clean ΔP =Flow RateX ΔP Coefficient (from Step 1)XAssembly ΔP Factor (from sizing table)											
∆P Factors ¹	Length	Units	Media 1M	3M	6L	10M	16M	25M	**W			
	16	psid/gpm	0.0463	0.0391	0.0303	0.0271	0.0266	0.0256	0.0046			
		bard/lpm	0.0008	0.0007	0.0006	0.0005	0.0005	0.0005	0.0001			
	36/39	psid/gpm bard/lpm	0.0324	0.0273	0.0212	0.0190 0.0003	0.0186 0.0003	0.0179 0.0003	0.0032 0.0001			

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

hyprofiltration.com/

F8 Part Number Builder

F8				-	-				
Connection	ElementT	ype Element Length	Indicator	Special Options	Media	Sea	al		
Connection	Port F32 F40	Option 2" Code 61 flan 2.5" Code 61 fla	ge Inge	Max Fl 300 gpm 300 gpm	ow Rate (1,136 lpm) ¹ (1,136 lpm) ¹				
Element Type	5 6 7	HP105 – no byp HP106 – 25 psid HP107 – 50 psid	ass (1.7 bard) i (3.4 bard)	integral elemer integral elemer	nt bypass nt bypass	32 35 8X 82 85	HP8310 – 25 p HP8310 – 50 p HP8314 – no b HP8314 – 25 p HP8314 – 50 p	osid (1.7 bard) integral osid (3.4 bard) integral oypass osid (1.7 bard) integral osid (3.4 bard) integral	housing bypass housing bypass housing bypass housing bypass
Element Length	16 36 ² 39 ²	L16 single lengt L36 single lengt L39 single lengt	h filter hou h filter hou h filter hou	ising ising ising					
ΔP Indicator	Indic D S V X Y	ator Options Visual / Electrica Visual / Electrica Visual No indicator (po Visual	al (DIN 436 al (DIN 436 prt plugged	50) 50)))		The No Yes No - Yes	ermal Lockout	Surge Control No Yes No - Yes	Reset Auto Manual Auto – Manual
Special Options	M1 M2	Mounting stand Stabilizing brac	l for base n ket	nount applicati	ons				
Media Selection	G8 D 0.5M 1M 3M 6L 10M ³ 16M 25M	$\begin{array}{l} \text{ualglass} \\ \beta 0.9_{[c]} \geq 4000 \\ \beta 3_{[c]} \geq 4000 \\ \beta 4_{[c]} \geq 4000 \\ \beta 7_{[c]} \geq 4000 \\ \beta 11_{[c]} \geq 4000 \\ \beta 16_{[c]} \geq 4000 \\ \beta 22_{[c]} \geq 4000 \end{array}$				G8 3A 6A 10A 25A	$\begin{array}{l} \textbf{Dualglass + w} \\ \beta 4_{[C]} \geq 4000 \\ \beta 6_{[C]} \geq 4000 \\ 3^{3} \beta 11_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \end{array}$	vater removal	
	Dyna 3SF 6SF 10SF 25SF	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \beta 4_{[C]} \geq 4000 \\ \beta 6_{[C]} \geq 4000 \\ \beta 1_{[C]} \geq 4000 \\ \beta 11_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \end{array}$	ber			Sta 25W 40W 74W 149V	inless wire m 25μ nominal 40μ nominal 74μ nominal Ν 149μ nominal	esh	
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stai	nless steel	support mesh					

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length Code 36. Length Code 39 only compatible with HP8310 and HP8314. ³For elements HP8310 and HP8314, use 12M or 12A for respective media code in place of 10M or 10A.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

209

210

Medium Pressure Filter Assemblies

Ideal for mobile equipment return line applications as an alternative to spin-ons, on-board fuel and dispensing and hydrostatic charge circuits.

Max Flow Rate: 100 gpm (379 lpm)

Max Operating Pressure: 1,200 psi (83 bar)

hyprofiltration.com/

Filtration starts with the filter.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $3_{[C]} \ge 4000$, + water absorption, you get the perfect element for your application, every time.

HF3 Compatible Design.

Port to port dimension, mounting pattern, and element design meet HF3 automotive specification. And with standard SAE drain ports, lightweight aluminum bowls, and knurled texture on the bowls provide ease for element servicing, you get all of the convenience you want with the compatibility you need.

1 F

Inherently versatile.

Unique internal flow paths providing a low clean pressure drop and element sizes from 4", the MF3 can be used in a variety of applications including Hydrostatic charge circuit for mobile equipment, CAT 5-Star service center, and return line alternative to spin-on assembles.

MF3 Installation Drawing

²¹² MF3 Specifications

Dimensions	See Installa	ation Drawing	s for model s	pecific dime	ensions.							
Operating Temperature	Fluid Temp 30°F to 225 (0°C to 105	erature 5°F i°C)				Ambient Temperature -4°F to 140°F (-20C to 60C)						
Operating Pressure	1200 psi (8	3 bar) max										
Burst Pressure	3000 psi (2											
∆P Indicator Trigger	22 psid (1.9 45 psid (3.1	52 bard) for 25 10 bard) for 50	psid bypass psid bypass	and non by	pass							
Element Collapse Rating	290 psid (2	.0 bard)										
Materials of Construction	HeadBowlElement Bypass ValveElement End CapsCast aluminumL4/L8: Cast aluminumNylonZinc or Tin coated carbon steel											
Media Description	M G8 Dualgla of DFE rate glass medi lubrication	ass, our latest ad, high perfor ia for all hydra fluids. $βx_{[C]} \ge$	generation mance ulic & 4000	A G8 Dualg media co removal s	Jlass high p ombined wit scrim. βx _[c]	erformance h water ≥ 4000	W Stainless media β	s steel wire me $\kappa_{_{[C]}} \ge 2 \ (\beta x \ge 2)$	esh			
Replacement Elements	To detern Filter Elem HP60L[Leng	mine replac i ent Part Num i gth Code] – [M	ement eler ber edia Selection	ments, us Code] [Seal	e corresp Code]	onding code: Example HP60L16-6MB	s from you	r assembly	part number:			
Fluid Compatibility	Petroleum other spec	and mineral b ified synthetic	ased fluids (s fluids use flu	tandard). Fo orocarbon s	or polyol est seal option o	ter, phosphate e or contact factor	ster, and y.					
Filter Sizing ¹	Filter asser assembly I with extrer	nbly clean ele oypass setting ne cold start c	ment ΔP after . See page 22 condition cont	r actual visco for filter as act Donalds	osity correc sembly sizin son Hy-Pro f	tion should not ng guidelines & or sizing recom	exceed 10% o examples. Fo mendations.	of filter or applications	5			
∆P Factors ¹	Length	Units	Media 1M	3M	6M	12M	16M	25M	**W			
	L8	psid/gpm	0.324	0.252	0.206	0.156	0.151	0.143	0.026			
		bard/lpm	0.006	0.005	0.004	0.003	0.003	0.003	0.000			

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

MF3 Part Number Builder

MF3	Connection	Eler	ment gth	Bypass	ΔP Indicator	–	/ ledia	Seal			
Connect	tion	Port G20 N20 N24 S20 S24	Option 1.25" G 1.25" N 1.5" NP 1.25" S 1.5" SA	thread (BS PT T AE E	PP)	Max 75 gr 75 gr 100 g 75 gr 100 g	k Flow Ra om (284 lpr om (284 lpr gpm (379 lp om (284 lpr gpm (379 lp	n)1 n)1 m)1 m)1 m)1 n)1 m)1			
Element Length	t	8	8″ (20 c	m) nomina:	l length filter	elem	ent and ho	using			
Bypass		1 3 X	25 psid 50 psid No byp	(1.7 bard) k (3.4 bard) k ass	oypass oypass						
ΔP Indic	ator	D V X	Visual v Visual/I No indi	vith electric Mechanical cator (port	: switch (DIN plugged)	Conn	ection)				
Media Selectio	'n	G8 D 1M 3M 6M 12M 16M 25M	$\begin{array}{c} \boldsymbol{\beta3}_{[C]} \geq 4\\ \boldsymbol{\beta5}_{[C]} \geq 4\\ \boldsymbol{\beta7}_{[C]} \geq 4\\ \boldsymbol{\beta12}_{[C]} \geq 4\\ \boldsymbol{\beta12}_{[C]} \geq 4\\ \boldsymbol{\beta12}_{[C]} \geq 4\\ \boldsymbol{\beta12}_{[C]} \geq 4\\ \boldsymbol{\beta22}_{[C]} \geq 4$	5 4000 4000 4000 4000 4000 4000		G8 [3A 6A 12A 25A	$\begin{array}{l} \begin{array}{l} \beta 5_{[c]} \geq 400\\ \beta 7_{[c]} \geq 400\\ \beta 12_{[c]} \geq 400\\ \beta 12_{[c]} \geq 40\\ \beta 22_{[c]} \geq 40\end{array} \end{array}$	+ water re	mova	al Stainless wire me 25W 25µ nominal 40W 40µ nominal 74W 74µ nominal 149W 149µ nominal	sh
Seals		B V E-WS ²	Nitrile (Fluoroc EPR sea	Buna) arbon als + stainle	ss steel supp	ort m	esh				

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Only available with ΔP Indicator option "X" selected.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

213

MF Medium Pressure Filter Assemblies

Donaldson Hy-Pro's MF90, MF110 and MF480 medium pressure filters are designed to protect sensitive components in hydraulic and transmission circuits. Install the series upstream of specific components or directly after the pressure pump in mid-flow systems to minimize risk of failure and costly system downtime.

Ideal for use as a charge pump discharge filter or a pilot filter, and to protect components that are sensitive to particulate contamination and require clean pressurized fluid for reliable operation.

Max Flow Rate: 100 gpm (379 lpm)

Max Operating Pressure: 580 psi (40 bar)

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 3_{[C]} \ge 4000$, + water absorption, you get the perfect element for your application, every time.

Industrial duty.

Standard mounting holes, a variety of port options and indicator options, and several length options with standard drain ports make the MF series the ideal choice for heavy duty hydraulic filtration.

Easy servicing.

When a new element is installed in the bowl, special slots in the MF bowls allow tabs in the elements' locking grab handles to freely rotate as the bowl is threaded onto the matching head. In this way, the element automatically finds the proper orientation to engage its unique, proprietary seal with the matching seal surface in the head.

The MF series come standard with bowl drains to minimize mess during servicing. Even better, this MF series retains the element cartridge using a slot in the bowl and locking grab handles on the elements. No need to reach in and pry off the used element, let the bowl removal do the work for you.

Unique applications.

With the unique element design, the MF90 and MF110 are ideal for applications with limited space for bowl clearance during servicing. Only 2.56" (65mm) of clearance is required as the proprietary locking grab handles retain the element inside the filter bowl during removal, automatically withdrawing the element from its seal as the bowl is rotated off during servicing. Simply pinch the locking grab handles to remove the used element from the bowl.

The ideal choice for hydraulics.

Use the MF as the main pressure filter(s) in medium pressure hydraulic systems or upstream of sensitive components as a pilot filter to protect your valves and actuators. Engineered to provide lower operating ISO Codes than what is required for compliance with hydraulics component manufacturers' warranties, they are well-suited for hydrostatic charge pump filtration and power shift transmission applications.

MF Sizing Guidelines

Filter Sizing¹

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See above for filter assembly sizing guidelines. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

ΔP Factors ¹	Series	Length	Units	Media						
				1M	3M	6M	10M	16M	25M	**W
	MF90	L9	psid/gpm	0.270	0.228	0.177	0.159	0.155	0.149	0.027
			bard/lpm	0.005	0.004	0.003	0.003	0.003	0.003	0.000
	MF110	L8	psid/gpm	0.250	0.211	0.164	0.147	0.144	0.138	0.025
			bard/lpm	0.005	0.004	0.003	0.003	0.003	0.003	0.000
		L11	psid/gpm	0.176	0.149	0.115	0.103	0.101	0.097	0.018
			bard/lpm	0.003	0.003	0.002	0.002	0.002	0.002	0.000
	MF480	L11	psid/gpm	0.214	0.155	0.122	0.099	0.092	0.026	0.006
			bard/lpm	0.012	0.008	0.005	0.004	0.003	0.003	0.001

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

MF Installation Drawings

MF110 Installation Drawing

MF Specifications

Dimensions	See Installation Drawings for model specific dimensions.											
Weight	MF90 L9: 5.2 lbs (2.36 kg)	MF110 L8: 6.2 lbs (2.82 kg) L11: 7.0 lbs (3.18 kg)	MF480 L11: 10.5 pounds (4.76 kg)									
Operating Temperature	-20°F to 250°F (-29°C to 121°C)											
Operating Pressure	MF90 580 psi (40 bar) max	MF110 435 psi (30 bar) max	MF480 508 psi (35.1 bar) max									
Burst Pressure	MF90 2000 psi (138 bar) max	MF110 1300 psi (90 bar) max	MF480 2000 psi (138 bar) max									
ΔP Indicator Trigger	18 psid (1.2 bard) for 25 psid bypass 40 psid (2.8 bard) for 50 psid bypass a	and non bypass										
Element Collapse Rating	150 psid (10.7 bard)											
Materials of Construction	Head Cast aluminum	Bowl Cast aluminum										
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $βx_{[C]} \ge 4000$	A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[C]} \ge 4000$	W Stainless steel wire mesh media $\beta x_{ C } \ge 2$									
Replacement Elements	To determine replacement eleSeriesFilter Element PaMF90HP90NL[Length 0MF110HP110NL[LengthMF480HP480NL[Length	ments, use corresponding codes f art Number Code] – [Media Selection Code] [Seal Code] Code] – [Media Selection Code] [Seal Code] Code] – [Media Selection Code] [Seal Code]	rom your assembly part number: Example HP90NL9-10AB HP110NL11-3MB HP480NL11-3MB									
Fluid Compatibility	Petroleum and mineral based fluids (subscription of contact stress of the set	standard). For polyol ester, phosphate este act factory.	er, and other specified synthetic fluids									

MF Part Number Builder

MF ∆P Indicator Series Connection Element Bypass Special Media Seal Lenath Options 90 Nominal flow rate up to 40 gpm (151 lpm)¹ Series Nominal flow rate up to 75 gpm (284 lpm)¹ 110 480 Nominal flow rate up to 100 gpm (379 lpm)¹ **MF90** Connection **MF110 MF480** G16 1" G thread (BSPP) G20 1.25" G thread (BSPP) F32 2" Code 61 Flange w/ MetricThreads 3/4" SAE 1.25" SAE S12 S20 1" SAE S16 Element **MF90 MF110 MF480** 9 9" (23 cm) nominal 8 8" (20 cm) nominal 11" (28 cm) nominal 11 Length length filter element length filter element length filter element 11" (28 cm) nominal 11 length filter element 2 25 psid (1.7 bard) bypass **Bypass** 3 50 psid (3.4 bard) bypass Х No bypass ΛP Indicator Options Electrical Specifications Connector DC 2 wire N.C. 100 mA DC @ 30 VDC Metri-pack 150 Series, AWG 18 Α Indicator 200 mA DC @ 30 VDC В DC 2 wire N.O. Packard Weatherpack, AWG 18 Single post DC N.O. 10-32UNF threaded post С 200 mA DC @ 30 VDC Е AC/DC 3-wire AWG 18 100 mA DC @ 30 VDC F AWG 18 DC 3 wire N.C. v Visual Pop-Up х No indicator (port plugged) **Special** M2 Mounting Bracket Options Media **G8** Dualglass G8 Dualglass + water removal Stainless wire mesh $\begin{array}{l} \beta 4_{[C]} \geq 4000 \\ \beta 6_{[C]} \geq 4000 \\ \beta 11_{[C]} \geq 4000 \end{array}$ 25W 25µ nominal 1M $\beta 3_{_{[C]}} \geq 4000$ 3A Selection $\beta 4_{[C]}^{[C]} \geq 4000$ 3M 6Δ 40W 40µ nominal 6M $\beta 6_{[C]}^{[C]} \ge 4000$ 10A 74W 74µ nominal $\beta 11_{[C]}^{i} \geq 4000$ $\beta 22_{[C]}^{L_{C}} \ge 4000$ 10M 149W 149µ nominal 25A $\begin{array}{l} \beta 16_{[C]} \geq 4000 \\ \beta 22_{[C]} \geq 4000 \end{array}$ 16M 25M В Nitrile (Buna) Seals v Fluorocarbon E-WS² EPR seals + stainless steel support mesh

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Only available with ΔP Indicator option "X" selected.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

PF2 High Pressure In-line Filter Assembly

Ideal for a variety of applications including mobile applications, paper and saw mills, power generation, general industrial machine tools, and automotive manufacturing. With HF2 compatible port-to-port dimension, mounting pattern, and element design to meet the automotive manufacturing standard.

Max Flow Rate: 20 gpm (76 lpm)

Max Operating Pressure: 4000 psi (275 bar)

hyprofiltration.com/

Elements that go beyond industry standard.

G8 Dualglass and PE glass elements are DFE rated to assure performance even when exposed to the toughest hydraulic systems and provide unmatched particulate capture and retention to remove contamination from your hydraulic and lube oils, for good.

Small size, huge results.

The compact size of PF2 filter assemblies make them the perfect addition directly upstream of your control valves and other sensitive components even in the tightest of spaces. And with two different mounting options to choose from, the incredible versatility of the PF2 makes it ideal for all of your high pressure filter applications.

Works under pressure.

Applications for the PF2 include mobile, general industrial machine tools, paper mills, sawmills, and speed control circuits for power generation systems. So whether you're operating waste haulers, cement mixers, fire trucks, cranes, or CNC routers, you can be sure the PF2 will protect your critical components even when the pressure is on.

In-Line Mount Installation Drawing

Manifold Mount Installation Drawing

PF2 Specifications

Operating	Fluid Tempe 30°F to 225°	e rature °F					Ambient 7 -4°F to 14	femperat 0°F	ure			
remperature	(0°C to 105°	°C)					(-20C to 6	0C)				
Operating Pressure	4000 psi (27	75 bar) max	C									
Flow Fatigue	2000 psi (13	37 bar)										
Rating												
Burst	12,000 psi (827 bar) m	ax									
Pressure												
ΔP Indicator	35 psid (2.4	bard) for 5	0 psid (3.4	bard) byp	bass.							
Trigger	70 psid (4.8 100 psid (6.	9 bard) for 9	no bypass	s. S.	bass.							
Element	Normal Col	lapse					High Colla	apse	.1)			
Collapse Rating	290 psid (20) bard)					3000 psid	(206 bar	a)			
Integral Bypass Setting	50 psid (3.4 90 psid (6.2	bard) bard)										
Materials of	Head		Bo	owl			Element E	Bypass Va	lve	Element	End Cap	3
Construction	(gradeT606	iuminum 1)	Al (g Bo	radeT606' pwl drain #	uminum 1) #4 SAE sta	andard	мскеї ріа	ted/Stain	iess steel	Zinc or I carbon s	in coated steel	
Media	M		A				SF			W		
Description	generation high perform media for a	of DFE rate of DFE rate mance glas Il hydraulic	st Ga ed, pe ss cc e & re	erformance ombined w moval scri	s nign e media ith water m. βx _{ici} ≥ 4	1000	fiber med	stainiess ia βx _[C] ≥	4000	media β	$x_{[C]} \ge 2 (\beta)$	c ≥ 2)
	lubrication	fluids. $\beta x_{[C]}$	≥ 4000		(-)							
Replacement Elements	To detern Filter Eleme HP2[Collaps	nine repla ent Part Nu se Rating Co	acement mber de]L[Leng	t <mark>elemen</mark> th Code] –	n <mark>ts, use o</mark> [Media Se	corres	ponding Code] [Seal	codes f Code]	rom you	Ir assem Example HP20L4-	bly part 12MV	number:
Fluid Compatibility	Petroleum a use fluoroca	and minera arbon seal	l based flu option or (iids (stand contact fac	lard). For p ctory.	oolyol e	ster, phosp	hate este	r, and othe	er specifie	d syntheti	ic fluids
Filter Assembly	Filter assen setting. For	nbly clean applicatio	element ∆ ns with e>	P after ac treme col	tual visco Id start co	sity cor ndition	rection she contact De	ould not onaldson	exceed 10 Hy-Pro fo	% of filter or sizing re	assembly	/ bypass dations.
Sizing ¹	Step 1: Ca	alculate Δ	P coeffic	ient for a	ictual vis	cosity						
	Using Sayt	olt Univers	sal Second	ls (SUS)			Using Ce	ntistokes	(cSt)			
	ΔP	Actual = Viscos	Operating sity1 (SUS)	Act X	ual Specif Gravity	ic or	ΔP	A =	ctual Ope Viscosity ¹	rating (cSt)	Actua G	al Specific ravity
	Coefficient		150		0.86		Coefficie	nt	32			0.86
	Step 2: Ca	alculate ad	ctual clea	an filter a	ssembly	/ ∆P at	both ope	erating a	nd cold	start visc	osity	
	Actual Ass	embly Clea	in ΔP =	Flow Ra	ate X Z	\P Coef	ficient (fron	n Step 1)	х	Assen (from	nbly ∆P Fa n sizing tab	ctor lle)
∆P Factors ¹	Collapse	Length	Units	Medi 1M	a 2M	3M	6M	12M	15M	16M	25M	**W
	20	L4	psid/gpn	n 2.145	N/A	1.810	1.403	1.258	N/A	1.231	1.185	0.213
		L8	bard/lpn psid/gpn	n <u>0.039</u> n 1.118	N/A N/A	0.033	<u> </u>	0.023	N/A N/A	0.022	0.022	0.004
	01		bard/lpn	0.020	N/A	0.017	0.013	0.012	N/A	0.012	0.011	0.002
	21	L4	psid/gpr bard/lpr	n 2.287 າ 0.042	1.930 0.035	N/A N/A	1.496 0.027	N/A N/A	1.341 0.024	1.312 0.024	1.264 0.023	0.228 0.004
		L8	psid/gpr	n 1.188	1.003	N/A	0.777	N/A	0.672	0.657	0.647	0.116
			pard/lpn	1 0.022	0.018	IN/A	0.014	IN/A	0.012	0.012	0.012	0.002

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PF2 Part Number Builder

PF2							_]		
	Connection	Colli	apse	Length	Bypass	Indicator	Med	lia	Seal	J		
Connec	tion	Port G12 ¹ M12 S12 ¹	Option ³ ⁄ ₄ " G th ³ ⁄ ₄ " Man ³ ⁄ ₄ " SAE) nread (BSPF nifold top m E	P) nount	Max 20 gp 20 gp 20 gp	T <mark>Flow R</mark> om (76 lpn om (76 lpn om (76 lpn	ate n) ² n) ² n) ²				
Collapse Rating	e	0 ³ 1	290 psi 3000 ps	d (20 bard) sid (206 bar	normal colla d) high colla	apse elemer apse elemer	nt nt					
Elemen Length	t	4 8	4″ (10 c 8″ (20 c	cm) nomina cm) nomina	l length filte I length filte	r element a r element a	nd housir nd housir	ng ng				
Bypass		3 6 X	50 psid 90 psid No byp	(3.4 bard) (6.2 bard) ass	oypass oypass							
∆P India	cator	Indio	cator O	ptions		The	rmal Lo	ckout	Surge Co	ntrol	Reset	
		D S V X Y	Visual / Visual / Visual No indi Visual (' Electrical (' Electrical (cator (port only	DIN 43650) DIN 43650) plugged)	No Yes No - Yes			No Yes No - Yes		Auto Manual Auto – Manual	
Media Selectio	n	G8 D 1M 2M ⁴ 3M ⁵ 6M 12M ⁵ 15M ⁴ 16M 25M	$\begin{array}{l} \beta 3_{ C } \geq 4\\ \beta 5_{ C } \geq 4\\ \beta 5_{ C } \geq 4\\ \beta 7_{ C } \geq 4\\ \beta 12_{ C } \geq 4\\ \beta 22_{ C } \geq 4\\ \beta 22_{ C } \geq 4\\ \end{array}$	SS 4000 4000 4000 4000 4000 4000 4000 4		G8 D 3A⁵ 6A⁵ 12A⁵ 25A⁵	$\begin{array}{l} \begin{array}{l} \beta 5_{[C]} \geq 4\\ \beta 7_{[C]} \geq 4\\ \beta 7_{[C]} \geq 4\\ \beta 12_{[C]} \geq -\\ \beta 22_{[C]} \geq -\end{array} \end{array}$	s + wate 000 000 4000 4000	er removal			
		Dyna 3SF 10SF	$\begin{array}{l} \beta \mathbf{f}_{\text{IZZ}} \mathbf{s}_{\text{IG}} \\ \beta 4_{[\text{C}]} \geq 4 \\ \beta 11_{[\text{C}]} \geq 11_{[\text{C}]} \end{array}$	inless fibe 1000 4000	r	Stair 10W 25W 40W 74W 149W	nless wir 10μ non 25μ non 40μ non 74μ non 149μ no	e mesh ninal ninal ninal ninal minal	I			
Seals		B V E-WS	Nitrile (Fluoroc EPR sea	Buna) carbon als + stainle	ess steel sup	port mesh						

¹Vent connection standard on G12 and S12 models - #4 SAE.

*Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. *When chosen, must be paired with Bypass option "3" or "6." ⁴Compatible only with High Collapse Rating option "1."

⁵Not available on High Collapse Rating option "1."

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

hyprofiltration.com/

PF4 High Pressure Base Mounted Filter Assemblies

Donaldson Hy-Pro PF4 pressure filters are designed for protecting sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump to minimize risk of failure and costly system downtime.

Ideal for components that are sensitive to particulate contamination, such as the servo valve, and require clean pressurized fluid for reliable operation.

Max Flow Rate: 150 gpm (568 lpm)

Max Operating Pressure: 6,000 psi (414 bar)

hyprofiltration.com/

Filtration starts with the filter.

G8 Dualglass elements are DFE rated to assure performance even when exposed to the toughest hydraulic systems and provide unmatched particulate capture and retention to protect servo valves and ensure you're operating at maximum efficiency.

Minimize the mess.

The top loading housing on PF4 filter assemblies provide easy and clean access when servicing or changing the element. Accessing the element is as simple as removing the housing cover, meaning you have no heavy bowl to lift and can get back in operation quicker than ever.

225

HF4 Compatible Design.

The PF4 series is engineered to meet mill and plant target cleanliness codes and required ISO4406:1999 cleanliness standards to meet hydraulic component manufacturers warranties. Available with HF4 compatible port to port dimension, mounting pattern, and element design to meet the automotive manufacturing standard.

Works with your system.

Available with several port and length configurations, you'll be amazed at how easily the PF4 integrates directly into your system.

Tailored to your needs.

PF4 assemblies come with an array of standard indicator options to allow you to customize your assemblies for your exact applications. From thermal lockouts to surge protection, your system will be prepared for whatever comes its way.

Donaldson Hy-Pro's advanced filter media delivers lower operating ISO Codes to eliminate internally generated contamination. With the widest range of media options and the large surface area of PF4 elements, your filter will have an incredibly long service life to protect your sensitive components better than ever.

PF4 Sizing Guidelines

Filter Sizing¹

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

∆P Factors ¹	Collapse	Length	Units	Media						
				1M	3M	6M	12M	16M	25M	**W
	PF4K**, PF4K1**,	L9	psid/gpm	0.2374	0.2003	0.1553	0.1392	0.1362	0.1312	0.0236
	11410		bard/lpm	0.0043	0.0036	0.0028	0.0025	0.0025	0.0024	0.0004
		L18	psid/gpm	0.1167	0.0985	0.0764	0.0685	0.0670	0.0645	0.0116
			bard/lpm	0.0021	0.0018	0.0014	0.0012	0.0012	0.0012	0.0002
		L27	psid/gpm	0.0775	0.0654	0.0507	0.0454	0.0444	0.0428	0.0077
			bard/lpm	0.0014	0.0012	0.0009	0.0008	0.0008	8000.0	0.0001
	PF4K3** (non-	L9	psid/gpm	0.3376	0.2849	0.2208	0.1980	0.1937	0.1866	0.0336
	bypass nousing)		bard/lpm	0.0061	0.0052	0.0040	0.0036	0.0035	0.0034	0.0006
		L18	psid/gpm	0.1651	0.1393	0.1080	0.0968	0.0947	0.0912	0.0164
			bard/lpm	0.0030	0.0025	0.0020	0.0018	0.0017	0.0017	0.0003
		L27	psid/gpm	0.1094	0.0924	0.0716	0.0642	0.0628	0.0605	0.0109
			bard/lpm	0.0020	0.0017	0.0013	0.0012	0.0011	0.0011	0.0002

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PF4 Installation Drawings

PF4 Specifications

Dimensions	See Installation Drawings for model specific dimensions.									
Weight	PF4 L9 56 lbs (25.4 kg)	PF4 L18 82 lbs (37	7.5 kg)	PF4 L27 109 lbs (49.5 kg)		PF4 L36 135 lbs (61.3 kg)				
Operating Temperature	-20°F to 250°F (-29°C to 121°C)									
Operating Pressure	6,000 psi (414 bar) max code 5,500 psi (379 bar) max all otl	62 port on her ports	ly							
Flow Fatigue Rating	3,500 psi (238 bar)									
Burst Pressure	16,400 psi (1130 bar)									
∆P Indicator Trigger	70 psid (4.8 bard) for both by Refer to Appendix for indicate	pass and r or wiring c	non-bypass liagrams							
Element Collapse Rating	HPK 290 psid (20.0 bard)	HPK3 3000 psid	d (206.8 bard)	HPK5 5000 psid (344.7 ba	ird)	HPKC 150 psid (10.3 bard)				
Integral Bypass Setting	90 psid (6.2 bard)									
Materials of Construction	Head/Lid Ductile iron (powder coated)		Bowl Seamless steel tu	bing (powder coated)	Assembl Delrin	y Bypass Valve				
Media Description	M G8 Dualglass, our latest gene of DFE rated, high performan glass media for all hydraulic a lubrication fluids. $\beta x_{[c]} \ge 4000$	eration ce &)	A G8 Dualglass hig media combined removal scrim. β	n performance with water $c_{\rm [C]} \ge 4000$	W Stainless media β	s steel wire mesh $\kappa_{_{[C]}} \ge 2$				
Replacement Elements	To determine replacement Filter Element Part Number HP[Collapse Rating Code]L[Ler	ent elem	ents, use corre – [Media Selection	sponding codes fi Code] [Seal Code]	rom you Example HPKL18-	r assembly part number: 16MV				
Fluid Compatibility	Petroleum and mineral based other specified synthetic fluid	l fluids (sta Is use fluo	andard). For polyol rocarbon seal optic	ester, phosphate ester on or contact factory.	r, and					

PF4 Part Number Builder

]				1						
PF4							-		-						
	Connection	Colla	apse	Length	Bypass	Indicator	Opti	ons	1	Media		Seal			
Conne	ction	Port	Option				Max	(Flow	Ra	ate	ſ	Max Pressu	ire R	ate	
		C24 F24	1.5" Co	de 62 flange de 61 flange			150 g	3pm (568 3pm (568	s ip S lp	om)' om) ¹	5	5000 psi (414 i 5500 psi (379 i	bar) bar)		
		G24	1.5″ GT	hread (BSPP	')		150 g	gpm (568	B Ip	om) ¹	5	500 psi (379 l	bar)		
		M24	Manifol	ld mount (se	e installatio	n detail)	150 g	3pm (568	ן א אור	om) ¹	5	5500 psi (379 l	bar)		
		324	1.5 5A	C			150 (Jhu (200	μ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		500 psi (579 i	uar)		
Collaps	Se	K3 K3	290 psi 3000 ps	d (20.0 bard), sid (206 8 bar	, HF4 eleme :d) HF4 eler	nt configurat	ion ration								
Rating		K5	5000 ps	sid (344.7 bar	d), HF4 eler	nent configu	ration								
		КС	150 psi	d (10.3 bard),	Coreless w	ith o-ring sea	als								
Elemei	nt	9	9″ (23 c	m) nominal	length filter	element and	housir	ng							
Length	l	18 27	18" (46	cm) nomina	l length filte I length filte	r element an	d hous d hous	ing ing							
0		36	36" (91	cm) nomina	l length filte	r element an	d hous	ing							
Bypass	6	3	50 psid	(3.4 bard) by	/pass										
- / [6 V	90 psid	(6.2 bard) by	/pass										
		<u> </u>													
∆P Ind	icator	India	ator O	ptions			The	rmal Lo	C	kout	5	Surge Cont	rol	Reset	
		S	Visual / Visual /	Electrical (D	No No Yes Ye					Yes Manual					
		v	Visual				No No Auto							Auto	
		X	No indi	cator (port pl	lugged)		- Voo				-	- /oo		- Manual	
		I	visual c	лпу			162				1	165		Wallual	
Specia		С	Reverse	e flow check	valve										
Option	S	Ν	Nickel p	plated interna	al componei	nts for high v	vater aj	oplicatio	ns	(not ava	ilab	le with Specia	al Opt	tion C)	
Media		G8 [Jualgla	SS			G8	Dualgla	as	s + wat	er	removal			
Selecti	on	1M	$\beta 3_{[C]} \ge 4$	000			3A	$\beta 4_{[C]} \ge 4$	400	00					
		3M 6M	$\beta 4_{[C]} \ge 4$ B6 > 4	000			6Α 12Δ	β6 _[C] ≥ 4 β11 >	400 אר	00					
		12M	β11 _[C] ≥ 4	4000			25A	β11 _[C] ≥ β22 _(c) ≥	: 40	000					
		16M	β16 _[C] ≥	4000				i (C)							
		25M	β22 _[C] ≥	4000											
		Dyn	afuzz st	ainless fib	ber		Stai	nless v	viı	re mes	h				
		3SF	$\beta 4_{[C]} \ge 4$	000			10W	10µ noi	mi	nal					
		0ЭГ 10SF	β0 _[C] ≥ 4 β11 >	4000 4000			25VV 40W	25µ no 40u no	mi mi	nal					
		25SF	β 22 _[C] ≥	4000			74W	74µ noi	mi	nal					
			(0)				149W	/ 149µ no	om	ninal					
Seals		В	Nitrile (Buna)											
			Fluoroc	arbon	e etaal ours	ort mech									
		E-443	LFN Sea	ais + stannes	a areer subb	ortmesn									

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

PFH High Pressure In-Line Filter Assemblies

Donaldson Hy-Pro's PFH14, PFH55, and PFH167 pressure filters are designed to protect sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump in smaller systems to minimize risk of failure and costly system downtime.

Ideal for use as a power unit pump discharge filter or a pilot filter, and to protect components that are sensitive to particulate contamination and require clean pressurized fluid for reliable operation, such as servo valves.

Max Flow Rate: 95 gpm (360 lpm)

Max Operating Pressure: 6090 psi (420 bar)

Dynamic Filter Efficiency

Hydraulic applications see dynamic flow changes on a regular basis. Dynamic Filter Efficiency testing takes the ISO16889 Multi-Pass testing even further with variable flow shifts to ensure your filter elements stand up to real world conditions and maintain the highest capture and retention rates in the industry.

Industrial duty.

Standard mounting holes for optional brackets, aluminum ID tags, a variety of indicator options, and standard drain ports make the PFH the ideal choice for heavy duty hydraulic filtration.

Unique applications.

With available nickel plating, the PFH14, PFH55 and PFH167 are ideal choices for rough duty, high water contamination applications. Media options include wire mesh, water removal, and Dualglass to address even the most unique contamination. A reverse flow check valve option enables usage in reversing hydrostatic drive systems.

Minimize the mess.

The PFH series comes standard with bowl drains to minimize mess during servicing. The circumferential o-ring bowl seal eliminates leaking and weeping.

Extend the life of your element.

Unique internal flow paths provide low resistance to flow, resulting in a low housing pressure drop. Donaldson Hy-Pro's advanced filter media delivers lower operating ISO Codes to eliminate internally generated contamination meaning your filter will have an incredibly long service life to protect your sensitive components better than ever.

Use the PFH as the main high pressure filter(s) in a hydraulic system or upstream of sensitive components as a pilot filter to protect your valves and actuators. The PFH series is engineered to provide lower operating ISO Codes than what is required for compliance with hydraulic component manufacturers' warranties.

PFH Sizing Guide

Filter Sizing¹

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

∆P Factors ¹	Series	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W
	PFH14	L3	psid/gpm	2.709	2.286	1.772	1.589	1.555	1.497	0.270
			bard/lpm	0.049	0.042	0.032	0.029	0.028	0.027	0.005
		L5	psid/gpm	2.071	1.748	1.355	1.215	1.189	1.145	0.206
			bard/lpm	0.038	0.032	0.025	0.022	0.022	0.021	0.004
		L9	psid/gpm	1.075	0.907	0.703	0.630	0.617	0.594	0.107
			bard/lpm	0.020	0.017	0.013	0.011	0.011	0.011	0.002
	PFH55	L5	psid/gpm	0.944	0.797	0.617	0.554	0.542	0.522	0.094
			bard/lpm	0.017	0.015	0.011	0.010	0.010	0.010	0.002
		L9	psid/gpm	0.580	0.497	0.423	0.383	0.374	0.368	0.066
			bard/lpm	0.011	0.009	0.008	0.007	0.007	0.007	0.001
	PFH167	L6	psid/gpm	0.536	0.452	0.350	0.314	0.308	0.296	0.053
			bard/lpm	0.010	0.008	0.006	0.006	0.006	0.005	0.001
		L10	psid/gpm	0.326	0.275	0.213	0.191	0.187	0.180	0.032
			bard/lpm	0.006	0.005	0.004	0.003	0.003	0.003	0.001
		L15	psid/gpm	0.205	0.200	0.155	0.139	0.136	0.131	0.024
			bard/lpm	0.004	0.004	0.003	0.003	0.002	0.002	0.000

¹Max flow rates and △P factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PFH Installation Drawings

PFH Specifications

Dimensions	See Installation Drawings of	r model spe	cific dimensions.				
Weight	PFH14 L3: 7.9 lbs (3.6 kg) L5: 9.2 lb (4.2 kg) L9: 13.2 lb (6.0 kg)		PFH55 L5: 14.5 lb (6.6 kg) L9: 18.2 lb (8.3 kg)		PFH167 L6: 34.6 lb (15.7 kg) L10: 39.2 lb (17.8 kg) L15: 43.9 lb (19.9 kg)		
Operating Temperature	-20°F to 250°F (-29°C to 121°C)						
Operating Pressure	PFH14 6090 psi (420 bar) max		PFH55 6090 psi (420 bar)	max	PFH167 6090 psi (420 bar) max	
Burst Pressure	PFH14 > 11,600 psi (800 bar)		PFH55 > 11,600 psi (800 b	ar)	PFH167 > 11,600 p	osi (800 bar)	
Flow Fatigue Rating	PFH14 2,000,000 cycles at 0-300 b per NFPAT3.10.5.1, R2 2000	ar)	PFH55 2,000,000 cycles at per NFPAT3.10.5.1	t 0-300 bar , R2 2000	PFH167 2,000,000 per NFPA) cycles at 0-300 bar T3.10.5.1, R2 2000	
∆P Indicator Trigger	73 psid (5 bard)						
Element Collapse Rating	HP***N 450 psid (31.0 bard) max		HP***H 3000 psid (206.8 bi	ard) max			
Integral Bypass Setting	PFH14 90 psid (6.2 bard)		PFH55 90 psid (6.2 bard)		PFH167 90 psid (6	5.2 bard)	
Materials of Construction	Head Spheroidal "cast iron"		Bowl Cold extruded stee	91	Exterior C Powder c	Coating oated	
Media Description	$\begin{tabular}{l} \hline M \\ G8 & Dualglass, our latest \\ generation of DFE \\ rated, high performance \\ glass media for all \\ hydraulic & lubrication \\ fluids. & \beta x_{[C]} \ge 4000 \end{tabular}$	A G8 Dualgla performan combined removal so	ass high ce media with water crim. $\beta x_{[c]} \ge 4000$	SF Dynafuzz stainless fiber media $\beta x_{[C]} \ge 4$	steel 4000	W Stainless steel wire mesh media $\beta x_{[C]} \ge 2$	
Replacement Elements	To determine replacedSeries CodeFilter Element14HP53[Collap55HP152[Collap167HP419[Collap	nent elem ent Part Nun ose Code] L [l ose Code] L ose Code] L	nents, use the se nber Length Code] – [Medi [Length Code] – [Medi [Length Code] – [Med	lected codes from a Selection Code][Sea dia Selection Code][Se dia Selection Code][Se	n the fol I Code] al Code] al Code]	lowing page below: Example HP53HL5-10MB HP152NL9-16MV HP419NL15-3AB	
Fluid Compatibility	Biodegradable and mineral	based fluids	s. For high water ba	sed or specified syntl	netics cons	ult factory.	

PFH Part Number Builder

235

PFH									_		
Series	Cor	nection	ElementType	Collapse	Leng	jth	Bypass	ΔP Indicator	Special Options	Media	Seal
Series	14 55 167	Nomi Nomi Nomi	nal flow rate nal flow rate nal flow rate	up to 15 gpr up to 35 gpr up to 95 gpr	n (57 l n (132 n (360	pm) ¹ Ipm) ¹ Ipm) ¹					
Connection	PFH G12 S8 S12	14 ¾" G ½" SA ¾" SA	thread (BSPP AE AE)	PFI C16 G16 S12 S16	H55 1″ Code 1″ G thi ¾″ SAE 1″ SAE	e 62 flang read (BSF	e (6000 psi) PP)	PFH C20 C24 G20 G24 S20 S24	167 1.25" Code 62 1.5" Code 62 f 1.25" G thread 1.5" G thread 1.25" SAE 1.5" SAE	flange (6000 psi) lange (6000 psi) (BSPP) BSPP)
Element Type	PFH ⁻ 53	14 HP53	filter element		PFI 152	H55 HP152 f	ilter elem	ent	PFH 419	167 HP419 DIN sta	ndard filter element
Collapse Rating	H N	3000 450 p	psid (206.8 ba sid (31.2 bard	urd) – High c) – Core-in e	ollaps Iemen	e elemer t with hc	nt with no busing by	housing bypa pass	ass		
Length	PFH 3 5 9	14 3″ (10 5″ (13 9″ (23	cm) nominal cm) nominal cm) nominal	element element element	PFI 5 9	H55 5″ (13 c 9″ (23 c	m) nomir m) nomir	nal element nal element	PFH 6 10 15	167 6" (15 cm) nor 10" (25 cm) no 15" (38 cm) no	ninal element minal element minal element
Bypass	6 X ²	90 ps No by	id (6.2 bard) b vpass	ypass							
ΔP Indicator	Indic D DX T V X	Cator C Visua Electr Visua Visua No in	Dptions I / Electrical (E ical switch on I / Electrical (E I dicator (port p	DIN 43650) Iy (DIN 436 DIN 43650) blugged)	50)	The No No Yes No	ermal L	ockout	Sur No No No	ge Control	Reset Auto Auto Manual Auto
Special Options	C ³ M2 N ⁴	Rever Mour Nicke	se flow check ting bracket I plated interr	valve al compone	ents fo	r high wa	ater appli	cations (non-b	oypass only)	
Media Selection	G8 D 1M 3M 6M 10M 16M 25M	$\begin{array}{c} \beta 3_{ C } \geq \\ \beta 4_{ C } \geq \\ \beta 6_{ C } \geq \\ \beta 6_{ C } \geq \\ \beta 11_{ C } \\ \beta 16_{ C } \\ \beta 22_{ C } \end{array}$	SS : 4000 : 4000 : 4000 ≥ 4000 ≥ 4000 ≥ 4000 ≥ 4000			G8 3A 6A 10A 25A	Dualgla β4 _[c] β6 _[c] β11 _[c] β22 _{[c}	ss + water re ≥ 4000 ≥ 4000 ≥ 4000 1 ≥ 4000	emoval		
	Dyna 3SF 6SF 10SF 25SF	$\begin{array}{c} \beta 4_{[C]} \geq \\ \beta 6_{[C]} \geq \\ \beta 11_{[C]} \\ \beta 22_{[C]} \end{array}$	ainless fiber 4000 4000 ≥ 4000 ≥ 4000 ≥ 4000			Sta 25W 40W 74W 149	inless w / 25µr / 40µr / 74µr W 149µ	ire mesh nominal nominal nominal nominal			
Seals	B V³ E-WS ³	Nitrile Fluore EPR s	e (Buna) ocarbon eals + stainle:	ss steel sup	port m	esh					

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Only available when paired with "H" high collapse element. ³Must be paired with Bypass option "6". Not compatible with Special Option "N".

When selected, automatically adds nickel plating to filter element. For replacement elements, add"-N" to end of filter element part number. Not available on PFH840 series.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

PFH62 High Pressure In-Line Filter Assemblies

Donaldson Hy-Pro's PFH62 pressure filters are designed to protect sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump to minimize risk of failure and costly system downtime.

Ideal for use as a power unit pump discharge filter and to protect components that are sensitive to particulate contamination and require clean pressurized fluid for reliable operation, such as servo valves.

Max Flow Rate: 150 gpm (568 lpm)

Max Operating Pressure: 6,600 psi (455 bar)

Dynamic Filter Efficiency

Hydraulic applications see dynamic flow changes on a regular basis. Dynamic Filter Efficiency testing takes the ISO16889 Multi-Pass testing even further with variable flow shifts to ensure your filter elements stand up to real world conditions and maintain the highest capture and retention rates in the industry.

Unique applications.

With available nickel plating, the PFH62 is an ideal choice for rough duty, high water contamination applications. Media options include wire mesh, water removal, and Dualglass to address even the most unique contamination. A reverse flow check valve option enables usage in reversing hydrostatic drive systems.

Industrial duty.

Standard mounting holes for an optional mounting bracket, a variety of indicator options, head-up or inverted mounting options, and side-in / end-out "L-Head" port orientation or a sub-plate manifold mount option make the PFH62 the ideal choice for heavy duty hydraulic filtration.

Minimize the mess.

The top loading housing on PFH62 filter assemblies provide easy and clean access when servicing or changing the element. Accessing the element is as simple as removing the housing cover, meaning you have no heavy bowl to lift and can get back in operation quicker than ever.

Extend the life of your element.

Unique internal flow paths provide low resistance to flow, resulting in a low housing pressure drop. Donaldson Hy-Pro's advanced filter media delivers lower operating ISO Codes to eliminate internally generated contamination meaning your filter will have an incredibly long service life to protect your sensitive components better than ever.

The ideal choice for hydraulics.

Use the PFH62 as the main high pressure filter(s) in a hydraulic system or upstream of sensitive components as a pilot filter to protect your valves and actuators. The PFH series is engineered to provide lower operating ISO Codes than what is required for compliance with hydraulic component manufacturers' warranties.

PFH62 Sizing Guide

Filter Sizing¹

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

∆P Factors ¹	Element Type	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W
	60	L8	psid/gpm	0.378	0.319	0.247	0.221	0.217	0.209	0.038
			bard/lpm	0.007	0.006	0.004	0.004	0.004	0.004	0.001
		L13	psid/gpm	0.237	0.200	0.155	0.139	0.136	0.131	0.024
			bard/lpm	0.004	0.004	0.003	0.003	0.002	0.002	0.000
		L16	psid/gpm	0.181	0.153	0.118	0.106	0.104	0.100	0.018
			bard/lpm	0.003	0.003	0.002	0.002	0.002	0.002	0.000
	61	L8	psid/gpm	0.488	0.412	0.319	0.286	0.280	0.270	0.049
			bard/lpm	0.009	0.008	0.006	0.005	0.005	0.005	0.001
		L13	psid/gpm	0.307	0.259	0.201	0.180	0.176	0.170	0.031
			bard/lpm	0.006	0.005	0.004	0.003	0.003	0.003	0.001
		L16	psid/gpm	0.161	0.136	0.105	0.095	0.093	0.089	0.016
			bard/lpm	0.003	0.002	0.002	0.002	0.002	0.002	0.000

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula.

PFH62 Installation Drawings

239

PFH62M Installation Drawing

PFH62 Specifications

Dimensions	See Installation Drawings for	or model specific dimensions.			
Weight	PFH62 L8 33 lbs(15 kg)	PFH62 L13 42 lbs(19 kg)		PFH62 L16 48 lbs(21.8 kg)	
Operating Temperature	-20°F to 250°F (-29°C to 121°C)				
Operating Pressure	6,600 psi (455 bar) max				
Burst Pressure	19,900 psi (1,372 bar) max				
Flow Fatigue Rating	2000 cycles at 0-300 bar per NFPAT3.10.5.1, R2 2000				
ΔP Indicator Trigger	73 psid (5 bard)				
Element Collapse Rating	HP60 290 psid (20 bard) max	HP61 3000 psid (206.8 l	bard) max	HP964 150 psid (20 bard) max
Integral Bypass Setting	90 psid (6.2 bard)				
Materials of Construction	Head + Cover Ductile iron	Bowl Seamless steel tu	bing	Exterior Coating Powder coated	
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 4000$	A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[C]} \ge 4000$	SF Dynafuzz stainless s fiber media βx _[C] ≥ 40	W teel Stainle 000 mesh n	ss steel wire nedia βx _[C] ≥ 2
Replacement Elements	To determine replacen Filter Element Part Number HP[ElementType Code] L [Len	nent elements, use the s ngth Code] – [Media Selection C	elected codes from ode][Seal Code]	n the following Examp HP61L8	page below: le 3-2MB
Fluid Compatibility	Biodegradable and mineral	based fluids. For high water ba	ased or specified synthe	etics consult facto	ry.

PFH62 Part Number Builder

PFH62											
	Connection	Element Type	Collapse	Length	Bypass	ΔP Indicator	Special Options	Media	Seal		
Connection	Port C20 F20 F24 G20 M24 S20 S24	Option 1.25" Code 62 1.25" Code 61 1.5" Code 61 1.25" G thread Manifold mod 1.25" SAE 1.5" SAE	2 flange (600 I flange flange d (BSPP) unt (see inst	00 psi) allation de	tail)	Max Flow 100 gpm (37 100 gpm (37 150 gpm (56 100 gpm (37 150 gpm (56 100 gpm (37 125 gpm (47	Rate 9 Ipm) 9 Ipm) 8 Ipm) 9 Ipm) 8 Ipm) 9 Ipm) 3 Ipm)				
Element Type	e 60 ¹ 61 964	290 psid (20 k 3000 psid (20 Coreless filter	oard) cored 7 bard) core r element	filter eleme ed filter ele	ent (HF3 comp ment (HF3 cor	atible) npatible)					
Element Length	8 13 16	8″ (20 cm) no 13″ (33 cm) n 16″ (40 cm) n	minal elem ominal elen ominal elen	ent nent nent							
Bypass	6 X ²	90 psid (6.2 b No bypass	ard) bypass								
ΔP Indicator	r Indi D S V X Y	cator Option Visual / Electr Visual / Electr Visual No indicator (Visual	ns ical (DIN 43 ical (DIN 43 (port plugge	650) 650) ed)	The No Yes No - Yes	rmal Lockout	Surge Con No Yes No - Yes	ntrol	Reset Auto Manual Auto – Manual		
Special Options	C M2 M3	Reverse flow Mounting bra 3/4" manifold	check valve icket I bolts (Reqi	uires conne	ection M24)						
Media Selection	G8 [1M 2M ³ 3M ⁴ 6M 12M ⁴ 15M ³ 16M 25M	$\begin{array}{l} \beta 3_{[c]} \geq 4000 \\ \beta 4_{[c]} \geq 4000 \\ \beta 4_{[c]} \geq 4000 \\ \beta 4_{[c]} \geq 4000 \\ \beta 6_{[c]} \geq 4000 \\ \beta 11_{[c]} \geq 4000 \\ \beta 11_{[c]} \geq 4000 \\ \beta 16_{[c]} \geq 4000 \\ \beta 16_{[c]} \geq 4000 \\ \beta 22_{[c]} \geq 4000 \end{array}$				$\begin{array}{l} \textbf{G8 Dualglass + water removal} \\ \textbf{3A}^{4} \beta 4_{ c } \geq 4000 \\ \textbf{6A}^{4} \beta 6_{ c } \geq 4000 \\ \textbf{12A}^{4} \beta 11_{ c } \geq 4000 \\ \textbf{25A}^{4} \beta 22_{ c } \geq 4000 \end{array}$					
	Dyna 3SF 6SF 10SF 25SF	$\begin{array}{l} \beta \textbf{4}_{ \text{C} } \geq 4000\\ \beta \textbf{6}_{ \text{C} } \geq 4000\\ \beta \textbf{11}_{ \text{C} } \geq 4000\\ \beta \textbf{22}_{ \text{C} } \geq 4000 \end{array}$	s fiber			Stainless v 10W 10μ nd 25W 25μ nd 40W 40μ nd 74W 74μ nd 149W 149μ nd	vire mesh ominal ominal ominal ominal ominal				
Seals	B V E-WS	Nitrile (Buna Fluorocarbo EPR seals +	a) on stainless st	eel support	t mesh						

¹Requires Bypass option 6 selected. ²Only available when paired with "H" high collapse element. ³Compatible only with Element Type "61", HP61L filter elements.

⁴Compatible only with Element Types "60", HP60L filter elements.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

hyprofiltration.com/

PFH92 High Pressure In-Line Filter Assemblies

Donaldson Hy-Pro's PFH92 pressure filters are designed to protect sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump to minimize risk of system failure and costly downtime.

Ideal for use in all high pressure and high flow hydraulic applications.

Dynamic Filter Efficiency.

Hydraulic applications see dynamic flow changes on a regular basis. Dynamic Filter Efficiency testing takes the ISO16889 Multi-Pass testing even further with variable flow shifts to ensure your filter elements stand up to real world conditions and maintain the highest capture and retention rates in the industry.

Industrial duty.

Standard code 62 port connections for high pressure applications. Mounting holes and bracket for head-up or inverted mounting options. Side-in / end-out "L-Head" port orientation make the PFH92 the ideal choice for heavy duty hydraulic filtration.

You choose the element.

Choose between a cored or coreless style element. Housings for coreless elements use a permanent inner liner, making element servicing and disposal easier. For critical applications where unfiltered fluid can not reach critical components, we offer high collapse elements with up to a 3000 psi collapse rating. The choice is yours to make.

Bypass and Reverse Flow Check Valve.

Donaldson Hy-Pro's PFH92 uses a unique bypass valve design that can be configured for a variety of bypass, reverse flow check, and filter element options. Whether you want a standard bypass and element or a non-bypass element with reverse flow check valve, we can customize a solution to fit your needs.

Installation made easy.

With the optional mounting bracket, adding the PFH92 to your equipment just got easier. The mounting bracket provides a solid support mounted to the head that can be bolted to your equipment. The standard lifting hook allows the housing to easily be placed into position during installation.

Minimize the mess.

The top loading housing on PFH92 filter assemblies provide easy and clean access when servicing or changing the element. Accessing the element is as simple as removing the housing cover, meaning there is no heavy bowl to remove. A hex nut on the cover makes servicing simple to minimize the downtime required to service the element.

PFH92 Sizing Guide

Filter Sizing¹

244

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

∆P Factors¹	Element Type	Length	Units	Media 1M	3M	6M	12M	16M	25M	**W
	94	L13	psid/gpm	0.22560	0.15060	0.10909	0.08054	0.06887	0.06264	0.03797
			bard/lpm	0.00411	0.00274	0.00199	0.00147	0.00125	0.00114	0.00069
		L26	psid/gpm	0.12803	0.09073	0.07009	0.05589	0.05008	0.04699	0.03472
			bard/lpm	0.00233	0.00165	0.00128	0.00102	0.00091	0.00086	0.00063
		L39	psid/gpm	0.09550	0.07077	0.05708	0.04767	0.04382	0.04177	0.03363
			bard/lpm	0.00174	0.00129	0.00104	0.00087	0.00080	0.00076	0.00061
	944	L13	psid/gpm	0.21663	0.14510	0.10550	0.07828	0.06714	0.06120	0.03767
			bard/lpm	0.00395	0.00264	0.00192	0.00143	0.00122	0.00111	0.00069
		L26	psid/gpm	0.11812	0.08465	0.06613	0.05339	0.04818	0.04540	0.03439
			bard/lpm	0.00215	0.00154	0.00120	0.00097	0.00088	0.00083	0.00063
		L39	psid/gpm	0.08742	0.06582	0.05385	0.04563	0.04227	0.04047	0.03337
			bard/lpm	0.00159	0.00120	0.00098	0.00083	0.00077	0.00074	0.00061
				Media						
				1M	2M	6M	15M	16M	25M	**W
	91	L13	psid/gpm	0.29551	0.19351	0.13703	0.09821	0.08233	0.07386	0.04031
			baru/ipili	0.00558	0.00332	0.00230	0.00175	0.00150	0.00133	0.00073
		L26	psid/gpm	0.16097	0.11095	0.08325	0.06421	0.05642	0.05227	0.03582
			pard/ipm	0.00293	0.00202	0.00152	0.00117	0.00103	0.00095	0.00065
		L39	psid/gpm	0.11734	0.08417	0.06581	0.05319	0.04803	0.04527	0.03436
			bard/lpm	0.00214	0.00153	0.00120	0.00097	0.00087	0.00082	0.00063

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula.

PFH92 Installation Drawings

²⁴⁶ PFH92 Specifications

Dimensions	See Installation Drawings for model specific dimensions.							
Weight	PFH92 L13 92 lbs (41.7 kg)	PFH92 L26 127 Ibs (57.6 kg)	P 1!	FH92 L39 52 lbs (68.9 kg)				
Operating Temperature	-20°F to 250°F (-29°C to 121°C)							
Operating Pressure	6,000 psi (415 bar) max							
Burst Pressure	17,300 psi (1,193 bar) max							
∆P Indicator Trigger	70 psid (4.8 bar) for bypas 100 psid (6.9 bar) for non-l	s pypass						
Element Collapse Rating	HP94 290 psid (20.0 bar) max	HP91 3000 psid (206.8 I	H bar) max 1	HP944 150 psid (10.3 bar) max				
Integral Bypass Setting	90 psid (6.2 bard)							
Materials of Construction	Head + Cover Ductile iron	Bowl Seamless steel tu	E: bing Po	xterior Coating owder coated				
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} \ge 4000$	A G8 Dualglass high performance media combined with water removal scrim. $βx_{[C]} \ge 4000$	SF Dynafuzz stainless ste fiber media $\beta x_{[c]} \ge 400$	W el Stainless steel wire 00 mesh media βx _[C] ≥ 2				
Replacement Elements	To determine replacement elements, use the selected codes from the following page below: Filter Element Part Number HP[ElementType Code] L [Length Code] – [Media Selection Code][Seal Code] HP91L13-2MB HP94L26-6MB HP94L39-25MB							
Fluid Compatibility	Biodegradable and mineral based fluids. For high water based or specified synthetics consult factory.							

PFH92 Part Number Builder

21	17
24	27

PFH92	Connection	ElementType	Length	Bynass	AP Indicator	Special	- Media	Seal			
	oonneedion	Liement type	Longin	Dypuss	Ai maloator	Options	modu	ocur			
Connection	Port	Port Option Max Flow Rate									
	C24 C32	24 1.5" Code 62 flange (6000 psi) 175 gpm (662 lpm) 32 2" Code 62 flange (6000 psi) 250 gpm (946 lpm)									
Element Type	94 ¹ 91 944 ¹	290 psid (20.0 bard) cored filter element 3000 psid (206.8 bard) cored filter element 150 psid (10.3 bard) coreless filter element									
Element Length	13 26 39	13″ (33 cm) no 26″ (66 cm) no 39″ (99 cm) no	13" (33 cm) nominal element 26" (66 cm) nominal element 39" (99 cm) nominal element								
Bypass	6 X ²	90 psid (6.2 ba No bypass	ar) bypass								
∆P Indicator	D S V X Y	cator Option Visual / Electr Visual / Electr Visual/Mechai No indicator (Visual only	ns ical (DIN 43 ical (DIN 43 nical port plugge	9650) 9650) 9d)	Therr No Yes No - Yes	nal Lockout	Surge Co No Yes No - Yes	ontrol	Reset Auto Manual Auto – Manual		
Special Options	С М2 N ³	Reverse flow check valve Head mounting bracket Nickel plated for high water applications (non-bypass only)									
Media Selection	G8 I 1M 2M ⁴ 3M⁵ 6M 12M⁵ 15M ⁴ 16M 25M	$\begin{array}{l} \begin{array}{l} \beta 3_{ C } \geq 4000 \\ \beta 4_{ C } \geq 4000 \\ \beta 4_{ C } \geq 4000 \\ \beta 6_{ C } \geq 4000 \\ \beta 6_{ C } \geq 4000 \\ \beta 11_{ C } \geq 4000 \\ \beta 11_{ C } \geq 4000 \\ \beta 16_{ C } \geq 4000 \\ \beta 22_{ C } \geq 4000 \end{array}$				$\begin{array}{c c} \textbf{G8 Dualgia} \\ \textbf{3A}^{5} & \beta\textbf{4}_{ \text{C} } \geq \\ \textbf{6A}^{5} & \beta\textbf{6}_{ \text{C} } \geq \\ \textbf{12A}^{5} & \beta\textbf{11}_{ \text{C} } \geq \\ \textbf{16A}^{5} & \beta\textbf{16}_{ \text{C} } \geq \\ \textbf{25A}^{5} & \beta\textbf{22}_{ \text{C} } \end{array}$	ass + water r 4000 4000 ≥ 4000 ≥ 4000 ≥ 4000	removal			
	Dyna 3SF 6SF 10SF 25SF	$\begin{array}{l} \beta \textbf{f}_{\text{ICI}} \geq \textbf{4000} \\ \beta \textbf{4}_{\text{ICI}} \geq \textbf{4000} \\ \beta \textbf{6}_{\text{ICI}} \geq \textbf{4000} \\ \beta \textbf{11}_{\text{ICI}} \geq \textbf{4000} \\ \beta \textbf{22}_{\text{ICI}} \geq \textbf{4000} \end{array}$	fiber			Stainless v 10W 10μ nc 25W 25μ nc 40W 40μ nc 74W 74μ nc 149W 149μ nc	vire mesh ominal ominal ominal ominal ominal				
Seals	B V E-WS	Nitrile (Buna Fluorocarbo EPR seals +	a) n stainless st	eel support	mesh						

¹Requires Bypass option 6 selected.

²Only available when paired with "H" high collapse element. ³When selected, automatically adds nickel plating to filter element. For replacement elements, add"-N" to end of filter element part number. ⁴Compatible only with ElementType "91", HP91L filter elements. ⁵Compatible only with ElementTypes "94" and "944", HP94L and HP944L filter elements.

PFH840 High Pressure In-line Filter Assemblies

Donaldson Hy-Pro's PFH pressure filters are designed to protect sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump in smaller systems to minimize risk of failure and costly system downtime.

Ideal for use on a power unit pump discharge filter or pilot filter directly in front of valves and actuators.

Max Flow Rate: 3000 psid (206.8 bard)

Max Operating Pressure: 9137 psi (630 bar)

hyprofiltration.com/

Dynamic Filter Efficiency.

Hydraulic applications see dynamic flow changes on a regular basis. Dynamic Filter Efficiency testing takes the ISO 4409 Multi-Pass testing even further with variable flow shifts to ensure your filter elements stand up to real world conditions and maintain the highest capture and retention rates in the industry.

Industrial duty.

Standard mounting holes for optional brackets, stainless steel ID tags, a variety of indicator options, and standard drain ports make the PFH the ideal choice for heavy duty hydraulic filtration.

Unique applications.

With available nickel plating of internal components and coarse wire mesh media options, the PFH series is perfect for applications like drill rig mud pump and gearbox applications where water contamination wrecks traditional filtration. Even include Donaldson Hy-Pro's G8 Dualglass media with Water Removal to take out dirt and water and leave your equipment operating more efficiently than ever.

Extend the life of your element.

Unique internal flow paths provide low resistance to flow, resulting in a low housing pressure drop. Donaldson Hy-Pro's advanced filter media delivers lower operating ISO Codes to eliminate internally generated contamination meaning your filter will have an incredibly long service life to protect your sensitive components better than ever.

Minimize the mess. The PFH series is available with Donaldson Hy-Pro's coreless

filter elements that can be readily disposed of through crushing or incineration. The circumferential o-ring bowl seal eliminates leaking and weeping. For easy cleaning and service, PFH bowls comes standard with drain plugs.

The ideal choice for hydraulics.

Use the PFH as the main high pressure filter(s) in a hydraulic system or upstream of sensitive components as a pilot filter to protect your valves and actuators. The PFH series are engineered to provide lower operating ISO Codes than what is required for compliance with hydraulic component manufacturers warranties.

²⁵⁰ PFH840 Reference Guide

PFH840 model shown

(4) 1/2" - 13 UNC mounting holes	
Outlet	
ΔP indicator	
Assembly ID tag	
	TANAT 12
	And Property in the local division of the lo
Powder coated filter bowl	
Bowl drain with removal cap for easy service	

hyprofiltration.com/

PFH840 Installation Drawings

Can be mounted as shown or inverted (bowl-up)

hyprofiltration.com/

²⁵² PFH840 Specifications

Dimensions	See Installation	n Drawings for model sp	pecific dimension	ns.					
Operating Temperature	Fluid Temperate 30°F to 225°F (0°C to 105°C)	ure		Ambient Tempera -4°F to 140°F (-20C to 60C)					
Operating Pressure	PFH840 5800 psi (400 b min. 2 x 10 ⁶ pre Nominal press according to D	ear) essure cycles ure IN 24550							
Flow Fatigue Rating	PFH840 9137 (630 bar) min. 2 x 10 ⁴ pre Quasi-static op pressure	essure cycles erating							
∆P Indicator Trigger	73 psid (5 bard)							
Element Collapse Rating	HP***N 450 psid (31.0 k	bard) max	HP***H 3000 psid (206	5.8 bard) max	HP***C 250 psid	HP***C 250 psid (17.2 bard) max			
Integral Bypass Setting	PFH840 87 psid (6.0 bar	rd) – Integral element b	ypass						
Materials of Construction	Head Cast steel	Bowl wit l DOM tubi	h Drain Plug ing	Interior Coating Phosphate		Exterior Coating Industrial powder coating			
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $βx_{[c]} \ge 4000$		A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[C]} \ge 4000$		W Stainless media β	W Stainless steel wire mesh media $\beta x_{[C]} \ge 2 \ (\beta x \ge 2)$			
Replacement Elements	To determine replacement elements, use the selected codes from the following page below: Series Code Filter Element Part Number Example 840 HP840[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code] HP840NL15-25MB								
	When Special Option "N" selected for housing, add "-N" to end of filter element part number for compatible Nickel plated filter element. Example: HP840NL8-6MV-N								
Fluid Compatibility	Biodegradable	and mineral based fluid	ds. For high wate	r based or specified syr	thetics cons	sult factory.			

PFH840 Part Number Builder

PFH840	Connecti	on Collapse	Length	Bypass	ΔP Indicator	- Media	Seal
Connection	C32	2″ Code 62 flanç (6000 psi)	je				
Collapse Rating	C ² H N ³	250 psid (17.2) 3000 psid (206 450 psid (31.2	oard) – Corel .8 bard) – Hi bard) – Core	ess element w gh collapse el -in element wi	vith integral by ement with no th housing by	pass (incluc housing by bass	les post assembly for element support pass
_ength	15 26	15" (38 cm) nc 26" (66 cm) nc	ominal ominal				
Bypass	7 ⁴ X ⁵	87 psid (6 barc No bypass	I) bypass				
\P Indicator	DX L V X	Electrical swite Visual with ele Visual No indicator (p	ch only (DIN ectric switch port plugged	connection) (DIN connectio)	on) + LED indic	ator	
Vedia Selection	G8 [1M 3M 6M 10M 16M 25M	$\begin{array}{l} \begin{array}{l} \beta 3_{[c]} \geq 4000 \\ \beta 5_{[c]} \geq 4000 \\ \beta 7_{[c]} \geq 4000 \\ \beta 7_{[c]} \geq 4000 \\ \beta 12_{[c]} \geq 4000 \\ \beta 17_{[c]} \geq 4000 \\ \beta 22_{[c]} \geq 4000 \end{array}$		G8 3A 6A 10A 25A	Dualglass + v $\beta 5_{[c]} \ge 4000$ $\beta 7_{[c]} \ge 4000$ $\beta 12_{[c]} \ge 4000$ $\beta 22_{[c]} \ge 4000$	vater remo	Stainless wire mesh25W25μ nominal40W40μ nominal74W74μ nominal149W149μ nominal
Seals	B V ⁷ E-WS	Nitrile (Buna Fluorocarbo 7 EPR seals + s) n stainless stee	el support mes	sh		

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ²Available on PFH840 only. ³PFH840 includes integral element bypass and does not include a bypass in the housing. ⁴PFH840 bypass setting is 87 psid (6.0 bard).

*Only available when paired with "H" high collapse element. *When selected, automatically adds nickel plating to filter element. For replacement elements, add"-N" to end of filter element part number. Not available on PFH840 series. *Not available with PFH840 series housings.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

PFHB High Pressure Full Flow Bi-Directional Filter Assemblies

Donaldson Hy-Pro's PFHB high pressure filter assemblies are designed for applications where flow direction changes and fluid must be filtered with full flow in both directions. Protect both components and clean fluid that typically does not return to the reservoir.

Ideal for steel mills, board plants, scrap yards, and concrete mixers.

Max Flow Rate: 95 gpm (360 lpm)

Max Operating Pressure: 7250 psi (500 bar)

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities to combat the dynamic flow changes in all hydraulic applications. With media options down to $3_{|C|} \ge 4000$, + water absorption, you get the perfect element for your application, every time.

Two directions, one result.

With unique flow paths and internal check valves, PFHB assemblies allow hydraulic fluids to travel in both directions while maintaining the highest of filter efficiencies. Whether installed at the end of a remotely located cylinder or small cylinders where used fluid is not able to return to the tank for standard filtration, the PFHB captures contaminants in both flow directions where others can't.

Always ready.

Perfect for use in hydrostatic loop circuits and any system where flow can change direction, the PFHB is ready for capturing particles in both directions with absolute efficiency - automatically.

PFHB Installation Drawing

Bi-Directional Schematic

hyprofiltration.com/

PFHB Specifications

Dimensions ¹	See Installation Drawing fo	See Installation Drawing for model specific dimensions.										
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)			Ambient Ter -4°F to 140°I (-20C to 60C	mperature F ;)							
Operating Pressure	7250 psi (500 bar)											
ΔP Indicator Trigger	73 psid (5 bard)	73 psid (5 bard)										
Element Collapse Rating	HP419NL 450 psid (31.0 bard) max		HP419HL 3000 psid (20	6.8 bard) max	HF 25	HP419CL 250 psid (17.2 bard) max						
Materials of Construction	Head Cast steel	Bowl ¹ Extruded	l steel	Interior Coa Phosphate	ting	Exterior Coating Industrial powder coating						
Media Description	M G8 Dualglass, our latest ge of DFE rated, high perform glass media for all hydrauli lubrication fluids. $βx_{[C]} \ge 40$	neration ance ic & 00	A G8 Dualglass media combi removal scrir	high performance ned with water n. $\beta x_{[c]} \ge 4000$	W St m	ainless stee edia βx _[C] ≥ 2	l wire mesh 2 (βx ≥ 2)					
Replacement Elements	To determine replacer Filter Element Part Number HP419[Collapse Code] L13 –	ment elem r [Media Selec	nents, use the selected codes from the following page below Example ction Code][Seal Code] HP419NL13-25MB									
Fluid Compatibility	Biodegradable and mineral	l based fluids	s. For high wat	er based or specifie	ed syntheti	cs, consult f	actory.					
Filter Sizing ²	Filter assembly clean eleme setting. For applications wi	ent ∆P after a th extreme c	actual viscosity cold start condi	correction should tion contact Donalc	not exceed Ison Hy-Pro	l 10% of filte o for sizing	er assembly bypass recommendations.					
∆P Factors ²	Length Units	Media 1M	3M 6N									

 $^1\text{Bowl}$ comes standard with drain plug. ^2Max flow rates and ΔP factors assume β = 150 SUS, 32 cSt.

L13

psid/gpm

bard/lpm

0.2364

0.0043

0.1995

0.0036

0.1546

0.0028

0.1387

0.0025

0.1357

0.0025

0.1307

0.0024

0.0235

0.0004

PFHB Part Number Builder

PFHB				-			
	Connection	Collapse Length	Bypass Ind	licator	Media	Seal	-
Connectio	n Port C24	Option 1½" Code 62 flange	Max F 95 gpm	low Rate (360 lpm) ¹			
Collapse	C H N	250 psid (17.2 bard) – 0 3000 psid (206.8 bard) 450 psid (31.2 bard) – 0	Coreless element v – High collapse e Core-in element w	with integral lement with vith housing	bypass (in no housing bypass	cludes post a g bypass	assembly for element support) ¹
Element Length	13	13" (33 cm) nominal le	ngth filter elemer	nt and housi	ng		
Bypass	7 X	102 psid (7 bard) bypa No bypass	55				
∆P Indicat	Or DX L V X	Electrical switch only (Visual with electric sw Visual/Mechanical No indicator (port plug	DIN connection) itch (DIN connecti ged)	ion) + LED in	dicator		
Media Selection	G8 [1M 3M 6M 10M 16M 25M	$\begin{array}{l} \beta \\ \beta $	G8 Du 3A β 6A β 10A β 25A β	$\begin{array}{l} \text{alglass + w} \\ 5_{ C } \geq 4000 \\ 7_{ C } \geq 4000 \\ 12_{ C } \geq 4000 \\ 22_{ C } \geq 4000 \end{array}$	vater remo	oval S 2 4 7 1	Stainless wire mesh 25W 25μ nominal 10W 40μ nominal 14W 74μ nominal 149W 149μ nominal
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stainless s	teel support mesl	n			

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

DLF(M) Low Pressure High Flow Duplex Filter Assembly

Designed to maintain continuous filtration, even throughout element servicing, the DLF series filter assemblies provide two high efficiency, high capacity filter housings coupled by a user-friendly 6-way, 3 position valve that completely seals the system from the atmosphere. Use the DLF(M) to remove particulate and water from a variety of fluids and maximize your uptime.

Ideal for systems where filters must be serviced without system interruption such as hydraulic, gearbox, pulp and paper, rolling mill oil, bulk oil handling, and high flow return-line filtration.

Max Operating Pressure: 150 psi (10 bar) Available options up to 450 psi (31 bar)

Donaldson.

One assembly, twice the filtration.

DLF assemblies combine two powerful LF housings to deliver lower ISO Codes faster than ever. With a turn of the lever, you'll introduce a new element to your fluid while simultaneously valving the used element out of service to easily change and replace, all while your system continues operating at full capacity.

259

Built for industrial use.

Constructed from heavy duty carbon steel (standard) or the optional 304 or 316 stainless steel, the DLF filter housings are designed to excel in even the toughest industrial conditions. Multiround units go even further to provide increased capacity whether you're operating with incredibly high viscosity oils or extreme flow rates.

Filtration starts with the filter.

The oversized coreless filter element in every DLF delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.

Seamlessly integrated into your systems.

Multiple connection options provide you with the ability to integrate the DLF directly in-line on your systems and get the most impact from your filtration directly where you need it.

Inherently safe.

The true 6-way valve with internal pressure equalization and fill line allows for seamless transition of flow from one housing to the other. As the valve is repositioned, oil from the in-service housing is redistributed to the out-of-service housing to purge air before it can move downstream – meaning you maintain fluid levels, preserve system control and prevent cavitation of your components, all while ensuring your fluid stays remarkably clean.

Clean oil has never been easier.

Designed to combine incredible capacity and low maintenance, the oversized housing with secure swivel bolts allow for effortless element changes with all the parts kept right where they need to be. The top loading housing and post/nipple system provide incredible ease of use and make element installation and maintenance easier than ever.

DLF Installation Drawing 260

¹Dimensions are approximations taken from base model and will vary according to options chosen and customer sizing requirements.

DLF

DLFM Installation Drawing

F Series Number Port Vessel А В С D Е G Weight Size of Diameter Elements 774.0 lb 3 2 16.0 in 19.1 in 8.4 in 68.8 in 12.4 in 14.0 in 74.0 in 37.0 in DLFM 351.0 kg 40.6 cm 48.6 cm 21.3 cm 172.2 cm 31.4 cm 35.6 cm 187.9 cm 94.0 cm 3 16.0 in 20.1 in 8.4 in 69.8 in 12.4 in 14.0 in 74.0 in 37.0 in 875.0 lb 40.6 cm 51.1 cm 21.3 cm 177.3 cm 31.4 cm 35.6 cm 187.9 cm 94.0 cm 397.0 kg 4 16.0 in 22.6 in 8.4 in 76.8 in 12.4 in 16.8 in 74.0 in 37.0 in 988.0 lb 40.6 cm 57.5 cm 21.3 cm 195.0 cm 31.4 cm 42.5 cm 187.9 cm 94.0 cm 448.0 kg 4 2 18.0 in 19.1 in 7.9 in 71.8 in 12.4 in 14.0 in 79.0 in 37.0 in 944.0 lb 45.7 cm 48.6 cm 20.1 cm 182.4 cm 31.4 cm 35.6 cm 200.6 cm 94.0 cm 428.0 kg 3 18.0 in 20.1 in 7.9 in 73.8 in 12.4 in 14.0 in 79.0 in 37.0 in 1045.0 lb 45.7 cm 51.1 cm 20.1 cm 187.5 cm 31.4 cm 35.6 cm 200.6 cm 94.0 cm 474.0 kg 4 18.0 in 22.6 in 7.9 in 80.8 in 12.4 in 16.8 in 79.0 in 37.0 in 1160.0 lb 42.5 cm 45.7 cm 57.5 cm 20.1 cm 205.3 cm 31.4 cm 200.6 cm 94.0 cm 526.0 kg 9 3 24.0 in 20.1 in 7.5 in 85.8 in 12.4 in 14.0 in 81.5 in 37.0 in 1629.0 lb 61.0 cm 51.1 cm 19.1 cm 217.9 cm 31.4 cm 35.6 cm 207.0 cm 94.0 cm 739.0 kg 4 22.6 in 24.0 in 7.5 in 92.8 in 12.4 in 16.8 in 81.5 in 37.0 in 1742.0 lb 61.0 cm 57.5 cm 19.1 cm 235.7 cm 31.4 cm 42.5 cm 207.0 cm 94.0 cm 791.0 kg 6 24.0 in 23.9 in 7.5 in 97.8 in 12.4 in 19.8 in 81.5 in 37.0 in 2063.0 lb 61.0 cm 60.7 cm 19.1 cm 248.4 cm 31.4 cm 50.2 cm 207.0 cm 94.0 cm 936.0 kg

¹Dimensions are approximations taken from base model and will vary according to options chosen and customer sizing

requirements. Contact factory to request model specific drawings or for any models not listed above. Dimensions shown are for 36" long filter elements.

DLF(M) Specifications

Dimensions	See Installation Drawing for model specific dimensions.											
Operating Temperature	Fluid Temp 30°F to 225 (0°C to 105	erature 5°F °C)				Ambient Te -4°F to 140° (-20C to 600	mperature F C)					
Operating Pressure	150 psi (10	.3 bar) standar	d. See speci	al options fo	or additiona	l pressure ra	tings.					
Element Collapse Rating	HP105 150 psi (10	.3 bar)	HP106 150 ps	i (10.3 bar)		HP107 150 psi (10.:	3 bar)	HP8 150	314 (All Cod psi (10.3 bar	es))		
Integral Element Bypass Setting	HP106 25 psid (1.7	7 bard)	HP107 50 psi	d (3.4 bard)		HP8314 (Code 82) HP8314 (Code 83) 25 psid (1.7 bard) 50 psid (3.4 bard)						
Materials of Construction	Housing Industrial o	coated carbon	steel									
Media Description	M G8 Dualgla of DFE rate glass medi lubrication	IAWi8 Dualglass, our latest generation f DFE rated, high performance lass media for all hydraulic & ubrication fluids. $\beta x_{[C]} \ge 4000$ G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[C]} \ge 4000$ Stainless steel wire mesh media $\beta x_{[C]} \ge 2$ ($\beta x \ge 2$)										
Replacement Elements	To detern Element Ty 5 6 7	mine replac pe Code	ement ele Filter I HP105 HP106 HP107	ments, us Element Par L[Length Coo L[Length Coo L[Length Coo	e corresp t Number de] – [Media de] – [Media de] – [Media	Selection Co Selection Co Selection Co Selection Co	odes from ode][Seal Co ode][Seal Co ode][Seal Co	de] HP10 de] HP10 de] HP10 de] HP10 de] HP10	embly pa mple 05L36–6AB 06L18–10MV 07L36–25ME	rt number:		
	8X 82 85		HP831 HP831 HP831	4L[Length Co 4L[Length Co 4L[Length Co	ode] – [Medi ode] – [Medi ode] – [Medi	ia Selection C ia Selection C ia Selection C	code][Seal C code][Seal C code][Seal C	ode] HP8 ode] HP8 ode] HP8	314L39–25W 314L16–12M 314L39–16M	/V B E–WS		
Fluid Compatibility	Petroleum contact fac skydrol flu	and mineral b story for compa id compatibilit	ased fluids, # atibility with y select fluid	#2 diesel fue fluorocarbo compatibili	els (standaro n seal optic ty from spe	d). For specif on. For phosp ecial options.	ied synthet bhate ester	ics or				
Filter Sizing ¹	Filter asser assembly I with extrer	mbly clean ele bypass setting me cold start c	ment ΔP afte See page 22 ondition con	r actual visc 2 for filter as tact Donalds	osity correc sembly sizi son Hy-Pro	ction should ng guideline for sizing rec	not exceed es & exampl commendat	10% of filte es. For appl ions.	r lications			
∆P Factors ¹	Model	Length	Units	Media 1M	3M	6L	10M	16M	25M	**W		
	DLF	L36/L39	psid/gpm bard/lpm	0.0324 0.0009	0.0273 0.0008	0.0212 0.0007	0.0190 0.0007	0.0186 0.0007	0.0179 0.0007	0.0032 0.0006		
	DLFM3	L36/L39	psid/gpm bard/lpm	0.0081 0.00015	0.0055 0.0001	0.0051 0.00009	0.0045 0.00008	0.0041 0.00007	0.0035 0.00006	0.0029 0.00005		
	DLFM4	L36/L39	psid/gpm bard/lpm	0.0067 0.00012	0.0048 0.00009	0.0044 0.00008	0.004 0.00007	0.0037 0.00007	0.0032 0.00006	0.0025 0.00005		
	DLFM9	L36/L39	psid/gpm bard/lpm	0.0034 0.00006	0.0025 0.00005	0.0022 0.00004	0.002 0.00004	0.0019 0.00003	0.0016 0.00003	0.0013 0.00002		

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

DLF(M) Part Number Builder

		0
- 2	46	51

DLF						-		-				
Series	Por Cor	t Connec ifiguration	tion ElementTy	rpe ∆P In	dicator	Special Options		Media	Seal			
Series	Nur omit M3 M4 M9 M14 M22	nber of Elem 1 element 3 elements 4 elements 9 elements 14 elements 22 elements	ents	Max 200 g 600 g 800 g 1800 g 2800 g 4400 g	Flow F pm (757 pm (227 pm (302 gpm (302 gpm (10 gpm (16	Rate Ipm) ¹ 1 Ipm) ¹ 8 Ipm) ¹ 14 Ipm) ¹ ,600 Ipm) ¹ ,656 Ipm) ¹						
Port Configuration	K O S	Opposite side Opposite side Same side por	porting (180°), porting (180°), ting (standard)	same cer in-line (d	nter line ifferent (center line	e)					
Connections	A15 A2 A3 A4 A6 D15 D2 D3	1.5" ANSI flang 2" ANSI flang 3" ANSI flang 4" ANSI flang 6" ANSI flang DN40 DIN flan DN50 DIN flan DN80 DIN flan	ge 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				D4 D6 F15 F2 F3 F4	DN100 DIN DN150 DIN 1.5" Code 2" Code 6 3" Code 6 4" Code 6	N flange N flange 61 flange 1 flange 1 flange 1 Flange			
Element Type	5 6 7	HP105 – no by HP106 – 25 psi HP107 – 50 psi	pass d (1.7 bard) inte d (3.4 bard) inte	egral eler egral eler	ment by ment by	pass pass	8X 82 85	HP8314 – 1 HP8314 – 2 HP8314 – 5	no bypass 25 psid (1.7 50 psid (3.4	bard) inte bard) inte	gral housing b gral housing b	oypass oypass
ΔP Indicator	D E F G	22 psid visual 22 psid visual 45 psid visual 45 psid visual	gauge + electrio gauge gauge + electrio gauge	c switch c switch			H* J* P X	65 psid vis 65 psid vis 2 pressure None (por	sual gauge sual gauge gages (ind ts plugged)	+ electric s elements ustrial liqu	switch 5 or 8* only) uid filled)	
Special Options	omit F G P9 ² S1 ³ S2 ³	150 psi (10.3 b Filter element Spill retention p Phosphate est 150 psi (10.3 ba 250 psi (17.2 ba	ar) max operati ΔP gauge with an with fork guid er fluid compat r) max oper. pre r) max oper. pre	ing press tattle tale des (indus ibility mo essure, 30 ssure, 30	sure, carl e followe strial coat odificatio 4 stainle 4 stainle	oon steel er needle ed steel) on ss steel ss steel	S3 ³ S9 ⁴ U1 ⁵ W X Y	450 psi (31. Skydrol flu U Code (A3 only applie Automatic 250 psi (17. 450 psi (31	0 bar) max (uid compati SME U code s to vessels air bleed v 2 bar) max (0 bar) max	oper. press bility mod certified -) alve oper. press oper. press	ure, 304 stainle lification sure, carbon ste sure, carbon ste	ess steel eel eel
Media Selection	G8 [1M 3M 6L 10M ⁶ 16M 25M	$\begin{array}{l} \begin{array}{l} \beta 3_{ C } \geq 4000 \\ \beta 5_{ C } \geq 4000 \\ \beta 7_{ C } \geq 4000 \\ \beta 7_{ C } \geq 4000 \\ \beta 12_{ C } \geq 4000 \\ \beta 17_{ C } \geq 4000 \\ \beta 22_{ C } \geq 4000 \end{array}$		G8 D 3A 6A 10A ⁶ 25A	$\beta \mathbf{J}_{[C]} \geq 4 \\ \beta \mathbf{J}_{[C]} \geq 4 \\ \beta \mathbf{J}_{[C]} \geq 4 \\ \beta 12_{[C]} \geq \beta 22_{[C]} \geq \beta 22_{[C]} \geq \beta 22_{[C]} \geq \beta 12_{[C]} \geq \beta \mathbf$	s + wate 000 000 4000 4000	r rer	noval	Stainle 25W 25 40W 40 74W 74 149W 14	ss wire n μ nomina μ nomina μ nominal 9μ nomina	nesh I I I al	
Seals	B V	Nitrile (Buna) Fluorocarbon										

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. ^aWhen selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility. ³Lid closure hardware is plated carbon steel.

⁵U1 option only applies to vessels not to transfer valve. ⁶For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

⁶⁵psi indicator options are to only to be used with 3" connection and lower.

DFN Low Pressure Duplex Filter Assembly

Designed to maintain continuous filtration, even throughout element servicing, the DFN series filter assemblies provide a compact and user-friendly 4-way, 2 position housing completely sealed from the atmosphere. Remove particulate and water from a variety of fluids including hydrogen seal, oil, turbine lube oil, bearing lube oil, and FD-ID-PA fan lube.

Ideal for systems where filters must be serviced without system interruption such as hydraulic, gearbox, wind turbine, boiler feed pump, mechanical/electro hydraulic control, and servo systems.

Max Operating Pressure: 888 psi (61.2 bar)

Max Flow Rate: 70 gpm (265 lpm)

Two positions, one result.

DFN housings provide unmatched in-line filtration with incredible ease of use. With a squeeze of the trigger and turn of the wrist, you'll introduce a new element to your fluid while simultaneously valving the used element out of service to easily change and replace, all while your system continues operating at full capacity.

All duplexes are not created equal.

Air in any lube system can quickly cause failure and force you to take your system down for maintenance. DFN assemblies utilize internal equalization and external vent ports to automatically push oil into and purge air out from the unused housing without any added effort.

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 3_{[c]} \ge 4000 +$ water absorption, you get the perfect element for your application, every time.

- 6.8 in -[172.0 mm] 11.1 in [283.0 mm] **DFN19 DFN39** - 4.0 in -[100.4 mm] 8.2 in [207.1 mm] Installation Installation Drawing Drawing 4X M8X1.25 3.0 in 4X M12X1.25 3.0 in [76.4 mm] [76.4 mm] 2.1 in [52.6 mm] 2.4 in [62.0 mm] 0.7 in [17.7 mm] 0.8 in [20.1 mm] 6.7 in [170.2 mm] 5.8 in [147.2 mm] 0 2.2 in [56.0 mm] 1.9 in [49.0 mm] 3.9 in [98.8 mm] ŧ 3.2 in [81.4 mm] (L10) 13.6 in [346.4 mm] (L15) 20.7 in [526.9 mm] 2.6 in [66.3 mm] – 5.5 in [139.7 mm] 3.5 in [87.9 mm] 4.3 in [108.9 mm]

DFN Specifications

Dimensions	See Installation Drawing for	See Installation Drawing for model specific dimensions.										
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)		Ambient Temper -4°F to 140°F (-20C to 60C)	ature								
Operating Pressure	DFN19 888 psi (61.2 bar) max		DFN39 350 psi (24.1 bar) max								
∆P Indicator Trigger	32 psid (2.21 bard)											
Element Collapse Rating	Normal Collapse (Collapse C 450 psid (31.0 bard)	Option N)	High Collapse (C 3000 psid (206.8	collapse Optio bard)	n H)							
Materials of Construction	Head Aluminum	Bowl L10 – Aluminum L15 – Steel	Interior Coating Anodized									
Media Description	M G8 Dualglass, our latest gen of DFE rated, high performa glass media for all hydraulic lubrication fluids. βx _(C) ≥ 400	A eration G8 Dualglas nce media coml & removal scr 0	ss high performance bined with water im. $\beta x_{[C]} \ge 4000$	W Stainless media βx _ι	steel wire mesh $_{C_1} \ge 2 \ (\beta x \ge 2)$							
Replacement Elements	To determine replacemSeries CodeFilter Element19HP19[Collapse39HP39[Collapse	ent elements, use o t Part Number e Code] L [Length Code] - e Code] L [Length Code] -	Corresponding codes [Media Selection Code][S [Media Selection Code][S	s from your eal Code] eal Code]	assembly par Example HP19HL6-10MB HP39NL6-6AV	t number:						
Fluid Compatibility	Biodegradable and mineral l	oased fluids. For high wa	ater based of specified sy	nthetics, cons	sult factory.							
Filter Sizing ¹	Filter assembly clean element setting. For applications with	nt ΔP after actual viscosi n extreme cold start con	ty correction should not e dition contact Donaldson	exceed 10% of Hy-Pro for siz	f filter assembly b ing recommenda	ypass tions.						
ΔP Factors ¹	Model Length Un	its Media 1M 3	BM 6M 10	M 16M	25M	**W						

DFN19N	L10	psid/gpm	1.4943	1.2610	1.0420	0.7820	0.6489	0.6250	0.3130
		bard/lpm	0.0272	0.0230	0.0190	0.0142	0.0118	0.0114	0.0057
DFN39N	L15	psid/gpm	0.4633	0.3910	0.3010	0.2660	0.2180	0.2100	0.1170
		bard/lpm	0.0084	0.0071	0.0055	0.0048	0.0040	0.0038	0.0021

 ^1Max flow rates and ΔP factors assume ~ = 150 SUS, 32 cSt.

DFN Part Number Builder

DFN	Co	nnection Collapse	Length	Bypass	s ΔP Indicat	or	Media	Seal	
Series	19 39	25 gpm (95 lpm) r 70 gpm (265 lpm)	max flow rate ¹ max flow rate ¹						
Connection	DFN F16 ²	19 1" Code 61 flange				DFN F24 ²	\39 1½″ Code 6	1 flange	
Collapse Rating	H N	3000 psid (206.8 k 450 psid (31.0 bar	oard) d)						
Element Length	DFN 10	19 10″ (25 cm) nomir	nal length filter	elemen	t and housing	DFN 15	139 15" (38 cm) element and	nominal leng d housing	th filter
Bypass	3	Integrated bypass	– 50 psid (3.4 ba	rd)					
∆P Indicator	D V X	Visual with electric Visual/Mechanical No indicator (port j	switch (DIN con	nection)				
Media Selection	G8 D 1M 3M 6M 10M 16M 25M	$\begin{array}{l} \textbf{Dualglass} \\ \textbf{3}_{[C]} \geq 4000 \\ \textbf{5}_{[C]} \geq 4000 \\ \textbf{7}_{[C]} \geq 4000 \\ \textbf{12}_{[C]} \geq 4000 \\ \textbf{17}_{[C]} \geq 4000 \\ \textbf{22}_{[C]} \geq 4000 \end{array}$		G8 Dua 3A ³ 5 5A ³ 7 10A ³ 1 25A ³ 2	$\begin{array}{l} \text{alglass + wate} \\ _{ c } \geq 4000 \\ _{ c } \geq 4000 \\ 2_{ c } \geq 4000 \\ 2_{ c } \geq 4000 \\ 2_{ c } \geq 4000 \end{array}$	er rem	noval	Stainless V 25W 25μ nd 40W 40μ nd 74W 74μ nd 149W 149μ nd	vire mesh ominal ominal ominal ominal
Seals	B V	Nitrile (Buna) Fluorocarbon							

When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

²Metric threads for flange connection bolts. See Appendix for exact connection sizes and specifications.

³Water Removal Media available only with Collapse option "N."

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Donaldson.

HY-PRO

DFH High Pressure Duplex Filter Assembly

The DFH series is designed to remove particulate and water from a variety of fluids including hydrogen seal oil, turbine lube oil, bearing lube oil, and FD-ID-PA fan lube. Applicable for wind turbine, boiler feed pump, mechanical/electro hydraulic control, and fuel handling systems.

Ideal for systems where filters must be serviced while continuous operation is not interrupted such as hydraulic, gearbox, and servo systems.

Max Operating Pressure: 3600 psi (248 bar)

Max Flow Rate: 70 gpm (265 lpm)

Elements that go beyond industry standard.

DFE rated advanced media technologies provide the highest level of particulate capture and retention capabilities so your equipment operates unimpeded by contamination. With media options down to $\beta 3_{[c]} \ge 4000$, + water absorption, you get the perfect element for your application, every time.

Two positions, one result.

DFH housings provide unmatched in-line filtration with incredible ease of use. With a squeeze of the trigger and turn of the wrist, you'll introduce a new element to your fluid while simultaneously valving the used element out of service to easily change and replace, all while your system continues operating at full capacity.

All duplexes are not created equal.

Air in any lube system can quickly cause failure and force you to take your system down for maintenance. DFN assemblies utilize internal equalization and external vent ports to automatically push oil into and purge air out from the unused housing without any added effort.

5.36 in [136.1 mm]

4.29 in [108.9 mm]

DFH Specifications

Dimensions	See Instal	See Installation Drawing for model specific dimensions.										
Operating Temperature	Fluid Tem 30°F to 22 (0°C to 10	p erature 5°F 5°C)				Ambient Tem -4°F to 140°F (-20C to 60C)	perature					
Operating Pressure	DFH19 3600 psi (248.2 bar) m	ax			DFH39 3000 psi (206	6.8 bar) m	ax				
∆P Indicator Trigger	73 psid (5	bard)										
Element Collapse Rating	450 psid (31.0 bard)										
Materials of Construction	Head Cast steel			Bowl Cast stee	I		Ho St	ousing Bypas eel	ss Valve			
Media Description	M G8 Dualgl of DFE rat glass med lubrication	ass, our late ed, high per lia for all hyc n fluids. βx _[c]	st generation formance draulic & ≥ 4000	A G8 Dualg media co removal s	lass high mbined w scrim. βx _{ιc}	$\begin{array}{ll} \textbf{W} \\ \text{h performance} \\ \text{with water} \\ \textbf{x}_{[c]} \geq 4000 \end{array} \\ \textbf{W} \\ \textbf{Stainless steel wire mesh} \\ \text{media } \beta \textbf{x}_{[c]} \geq 2 \; (\beta x \geq 2) \\ \end{array}$						
Replacement Elements	To deter Series Co 19 39	To determine replacement elements, use corresponding codes from your assembly part numberSeries CodeFilter Element Part NumberExample19HP19[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code]HP19HL6-10MB39HP39[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code]HP39NL6-6AV										
Fluid Compatibility	Biodegrad	lable and mi	neral based fluid	s. For high	water bas	ed of specified	d syntheti	cs, consult fa	actory.			
Filter Assembly	Filter asse filter asse extreme o	embly clean mbly bypas cold start co	element ΔP after s setting. See be ndition contact D	r actual vis low for vis)onaldson	cosity cor cosity cor Hy-Pro fo	rrection shoul rrection formu r sizing recom	d not exce Ila. For ap Imendatic	eed 10% of plications w ons.	rith			
Sizing'	Step 1:	Calculate	ΔP coefficie	nt for ac	tual vis	cosity						
	Using S	aybolt Un	iversal Secon	ds (SUS)		Using Cen	itistokes	(cSt)				
	ΔP	Actual _ Viscos	Operating sity1 (SUS) X	Actual Spe Gravity	cific ,	ΔP	Actu Viso	al Operating cosity ¹ (cSt)	Ac	tual Specific Gravity		
	Coefficier	it	150	0.86		Coefficient		32		0.86		
	Step 2:	Calculate	actual clean	filter as	sembly	∆P at both	n operat	ing and c	old start	viscosity		
	Actual As	ssembly Clea	an ∆P = Flov	w Rate X	∆P Coef	ficient (from S	tep 1) 💙	K A	ssembly ∆P	Factor		
∆P Factors ¹	Model	Length	Units	Media 1M	3M	6M	10M	16M	25M	**W		
	DFH19	L10	psid/gpm bard/lpm	1.494 0.0272	1.261 0.0230	1.042 0.0190	0.782 0.0142	0.649 0.0118	0.625 0.0114	0.313 0.0057		
	DFH39	L15	psid/gpm bard/lpm	0.463 0.0084	0.391 0.0071	0.301 0.0055	0.266 0.0048	0.218 0.0040	0.210 0.0038	0.117 0.0021		

¹Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

DFH Part Number Builder

DFH	Co	onnection	Collapse	Length	Bypass	ΔP Indicator	– Me	dia	Seal		
Series	19 39	25 gpm 70 gpm	(95 lpm) ma (265 lpm) m	nx flow rate ¹ nax flow rate	1						
Connection	DFH F16 ²	19 1″ Code	61 flange			[DFH39 -24 ² 11/2) ″ Code 61	flange		
Collapse	H N	3000 psi 450 psid	d (206.8 baı (31.0 bard)	rd)							
Element Length	DFH 10	119 10″ (25 c	cm) nomina	l length filter	element an	[d housing 1	DFH39 15 15' ele) ' (38 cm) ment and	nominal le housing	ngth filter	
Bypass	7	102 psid	(7 bard) byp	ass							
∆P Indicator	D V X	Visual w Visual/M No indic	ith electric s lechanical ator (port p	switch (DIN c lugged)	connection)						
Media Selection	G8 [1M 3M 6M 10M 16M 25M	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \beta 3_{[c]} \geq 40\\ \beta 5_{[c]} \geq 40\\ \beta 7_{[c]} \geq 40\\ \beta 7_{[c]} \geq 40\\ \beta 12_{[c]} \geq 4\\ \beta 17_{[c]} \geq 4\\ \beta 22_{[c]} \geq 4 \end{array}$	S 000 000 000 4000 4000 4000		$\begin{array}{c c} \textbf{G8 Dualgla}\\ \textbf{3A}^3 & \beta 5_{ C } \geq \\ \textbf{6A}^3 & \beta 7_{ C } \geq \\ \textbf{10A}^3 & \beta 12_{ C }\\ \textbf{25A}^3 & \beta 22_{ C } \end{array}$	ass + water 4000 4000 ≥ 4000 ≥ 4000	remov	ral	Stainles 25W 25μ 40W 40μ 74W 74μ 149W 149	s wire me nominal nominal nominal µ nominal)sh
Seals	B V	Nitrile (B Fluoroca	Buna) arbon								

When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

²Metric threads for flange connection bolts. See Appendix for exact connection sizes and specifications. ³Water Removal Media available only with Collapse option "N."

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

BT Breathers with T.R.A.P.Th Technology Self-Regenerating Moisture and Particulate Breathers

Protect your uptime, critical hydraulic & lube assets and fluid life. Donaldson Hy-Pro Thermally Reactive Advanced Protection (T.R.A.P) breathers are critical in Donaldson Hy-Pro's Total System Cleanliness approach as a barrier preventing airborne particles and water from entering reservoirs and gearboxes. Unlike traditional dessicant breathers, T.R.A.P breathers can self-regenerate their water-holding capacity, extending the life of the breather and lowering the total cost of ownership.

Long life, fewer change-outs.

Unlike traditional silica gel breathers, Donaldson Hy-Pro T.R.A.P. breathers utilize a technology that allows the breather to continuously regenerate its water absorbing capacity. This technology allows the breather life to be extended up to 6 months. By reducing the number of change-outs required, money is saved in both parts and labor.

Self-Regenerating Water Absorbing Capacity.

Atmospheric moisture is a continuous threat to efficient operations of your equipment and machinery. Donaldson Hy-Pro T.R.A.P Breathers absorb water from the air coming into the reservoir. Air is heated and dried in the warm hydraulic reservoir. As the tank exhales, the dry air strips the moisture from the saturated T.R.A.P. media, regenerating it's life.

Dual contamination prevention.

Each Donaldson Hy-ProT.R.A.P. Breather is equipped with an internal 3 micron particulate filter along with a proprietary water absorbing media to keep your system both clean and dry.T.R.A.P. Breathers utilize a full pleated media pack to maximize dirt holding capacity and minimize pressure drop.

Complete drying system.

Achieve the ultimate head space drying system when paired with the TMR-Air or TMR-N₂ reservoir driers. The combination of the two technologies will eliminate condensation issues in tanks and reservoirs.

The perfect fit for your system.

Hy-Dry Breathers come in a variety of sizes, connections, and other options designed for countless applications. Whether you're installing on a small gearbox reservoir or on-board a high vibration mobile application, there's a Donaldson Hy-Pro T.R.A.P. Breather suited perfectly to fit your needs.

Total Systems Cleanliness

Used in conjunction with more robust particulate filtration, Donaldson Hy-ProT.R.A.P. Breathers are a pivotal component to achieving Total Systems Cleanliness and ensuring your equipment is protected from all forms of airborne contamination.

BT Reservoir Adapters

Part Number	Element Connection	Reservoir Connection	Material	Indicator Set Point	Use with Breather	
BT25IK15	3/4" FNPT	3/4″ MNPT	Stainless Steel	Indicator Kit Included 20″ H2O/5 kPa Trip Point	HPBT25N12-X	
BT45IK15	1" FNPT	1" MNPT	Plastic	Indicator Kit Included 20″ H2O/5 kPa Trip Point	HPBT45N16-X	
136501- 00520	3/8-12 UN		Plastic	20" H2O/5 kPa Trip Point	Replacement Indicator	
P570353	1″ FNPT & 1 ½-16 UN	Bayonet	Plastic	N/A	HPBT45	1 _e

BT Installation Drawing

BT Disposable Cartridge Breathers

275

	P		2 4 6		
Model	HPBT3N4-X	HPBT3N6-X	HPBT25N12-X	HPBT45N16-X	HPBT45N16-DX
Height	2.21″	2.21″	2.85"	4.57″	4.57″
rioigitt	5.6 cm	5.6 cm	7.2 cm	11.6 cm	11.6 cm
Diameter	1.65″	1.65″	3.18″	4.5″	4.5″
	4.2 cm	4.2 cm	8.1 cm	11.4 cm	11.4 cm
Connection	1/4" MNPT	3/8" MNPT	3/4" MNPT	1" MNPT	1″ MNPT
Allowable Tank Connections	1/4" BSPT 1/4" FNPT	3/8" BSPT 3/8" FNPT	3/4″ BSPT 3/4″ G 3/4″ FNPT SAE-12	1″ BSPT 1″ G 1″ FNPT SAE-16	1″ BSPT 1″ G 1″ FNPT SAE-16
Airflow	3 cfm	3 cfm	25 cfm	45 cfm	45 cfm
7 (1110) V	5 m³/h	5 m³/h	42 m³/h	76 m³/h	76 m³/h
Reservoir Flow	22 gpm	22 gpm	337 gpm	337 gpm	337 gpm
	85 lpm	85 lpm	1274 lpm	1274 lpm	1274 lpm
Particulate Efficiency	3µ _[C] @ 97%	3µ _[C] @ 97%	3µ _[C] @ 97%	3µ _[C] @ 97%	3µ _[C] @ 97%
Material	ABS Plastic	ABS Plastic	Steel E-coated	ABS Plastic	ABS Plastic
Indicator	None	None	None	None	Electric LED light

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

The circuit "breathes in" air containing moisture vapor.

The T.R.A.P. breather 2 strips moisture and particulate from the incoming air, allowing only clean, dry air to enter the circuit.

During the "exhalation" cycle, the T.R.A.P. breather allows 3 unrestricted airflow outward.

The outflow of dry air picks up 4 the moisture collected by the T.R.A.P. breather during intake, and "blows it back out" - fully regenerating the breather's water-holding capacity.

Protect your uptime, critical hydraulic & lube assets and fluid life. Hy-Dry breathers are critical in Donaldson Hy-Pro's Total System Cleanliness approach as a barrier preventing airborne particles and water from entering reservoirs and gearboxes.

A breath of fresh air.

Atmospheric moisture is a continuous threat to efficient operations of your equipment and machinery. Hy-Dry Breathers utilize high capacity silica gel to remove water from the air before it can ever enter your equipment, protecting your investment and helping prevent fluid breakdown.

Unmistakable water removal.

As Hy-Dry Breathers adsorb moisture from the air entering your system, the gold silica gel gradually changes colors to let you know it's working effectively and even give you a reminder of when it's time for replacement.

Dual contamination prevention.

Each Hy-Dry Breather is equipped with an internal 2 micron particulate filter on both ends of the silica chamber to protect your system from airborne contamination. As an added benefit, exhaust from your reservoir flushes the trapped particulate from the outer filter and back into the atmosphere, making your Hy-Dry a selfcleaning powerhouse for contamination prevention.

Keep contamination in check.

Select models of Hy-Dry breathers come with dual check valves (0.1 psi / 0.007 bar standard) to prevent outside moisture from entering and greatly extending the life of your breather.

The perfect fit for your system.

Hy-Dry Breathers come in a variety of sizes, connections, and other options designed for countless applications. Whether you're installing on a small gearbox reservoir or on-board a high vibration mobile application, there's a Hy-Dry Breather suited perfectly to fit your needs.

Total Systems Cleanliness

Used in conjunction with more robust particulate filtration, Hy-Dry Breathers are a pivotal component to achieving Total Systems Cleanliness and ensuring your equipment is protected from all forms of contamination.

²⁷⁸ HPB Disposable Cartridge Breathers

Stationary Applications.

Designed for versatility, HPB Breathers provide the base for all Hy-Dry Breathers with a wide range of fluid compatibility and numerous models to fit nearly any stationary application. The high impact resistant ABS caps and clear acrylic silica chamber provide protection from industrial environments while making inspection and replacement easier than ever.

				19-04	HERE HERE			
Model	HPB-31	HPB-34	HPB-100	HPB-101	HPB-102	HPB-103	HPB-108	HPB-154
Height	2''	3.25''	3.5 ''	5''	8''	8''	10''	5''
lioigitt	5.1 cm	8.3 cm	8.9 cm	12.7 cm	20.3 cm	20.3 cm	25.4 cm	12.7 cm
Diameter	2''	3.25''	5''	5''	5''	5''	5''	5''
	5.1 cm	8.3 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm	12.7 cm
Stem Height	1.25''	N/A	1.25''	1.25''	1.25''	1.25''	N/A	1.25''
	3.2 cm	N/A	3.2 cm	3.2 cm	3.2 cm	3.2 cm	N/A	3.2 cm
Connection	1/2" FNPT	1/2" FNPT	1" Slip Fit	1" Slip Fit	1" Slip Fit	1" MNPT	2" MNPT	1" MNPT
Silica Gel	0.08 lb	0.50 lb	0.80 lb	1.40 lb	2.70 lb	2.70 lb	3.50 lb	1.40 lb
	0.04 kg	0.23 kg	0.36 kg	0.64 kg	1.22 kg	1.22 kg	1.59 kg	0.64 kg
Fluid Capacity	0.5 oz	3.1 oz	4.9 oz	8.6 oz	16.6 oz	16.6 oz	21.5 oz	8.6 oz
	14 ml	90 ml	145 ml	254 ml	490 ml	490 ml	635 ml	254 ml
Airflow	5 cfm	5 cfm	20 cfm	20 cfm	20 cfm	20 cfm	20 cfm	20 cfm
	8 m³/h	8 m³/h	34 m³/h	34 m³/h	34 m³/h	34 m³/h	34 m³/h	34 m³/h
Reservoir Flow	37 gpm	37 gpm	150 gpm	150 gpm	150 gpm	150 gpm	150 gpm	150 gpm
	140 lpm	140 lpm	568 lpm					
Particulate Efficiency	2 Micron Nominal							

HPBC Integrated Check Valve Breathers

High Humidity & Dust Applications.

Taking our HPB Disposable Breathers even further, HPBC Disposable Breathers feature integrated intake and exhaust check valves to close the system from the atmosphere until airflow is required and extend the life of the breather. The reusable top cap that houses the check valves provides incredible ease of use in replacing spent cartridges and protects new breathers from the moment you install them.

BID HPBCR & HPBR Extreme Duty Breathers

High Vibration, Dust, & Humidity Applications

Featuring a reusable metal reinforced based with male NPT threads, HPBCR and HPBR Breathers are ideal for fluid management applications that require protection from extreme conditions. HPBCR models include intake and exhaust check valves in a reusable top cap to prevent unnecessary air flow and economical replacement of the desiccant cartridges. Perfect for high vibration applications such as mobile, wind power, mining and many others.

Model	HPBCR-101	HPBCR-102	HPBR-101	HPBR-102
Height	8.5 ''	11.5 ''	6.5''	9.5''
noight	21.6 cm	29.2 cm	16.5 cm	24.1 cm
Diameter	5.2 ''	5.2''	5.2''	5.2''
Diamotor	13 cm	13 cm	13 cm	13 cm
Stem Height	1''	1''	1''	1''
otomnoight	2.5 cm	2.5 cm	2.5 cm	2.5 cm
Connection	1" MNPT	1" MNPT	1" MNPT	1" MNPT
Check Valve In	0.1 psi	0.1 psi		
	0.007 bar	0.007 bar		
Check Valve Out	0.1 psi	0.1 psi		
Check valve Out	0.007 bar	0.007 bar		
Silica Gol	1.4 lb	2.7 lb	1.4 lb	2.7 lb
	0.64 kg	1.22 kg	0.64 kg	1.22 kg
Eluid Capacity	8.6 oz	16.6 oz	8.6 oz	16.6 oz
ridia capacity	254 ml	490 ml	254 ml	490 ml
Airflow	25 cfm	25 cfm	25 cfm	25 cfm
7 (1110) V	42 m³/h	42 m³/h	42 m³/h	42 m³/h
Reservoir Flow	187 gpm	187 gpm	187 gpm	187 gpm
	708 lpm	708 lpm	708 lpm	708 lpm
Replacement	HPB-351	HPB-352	HPB-301	HPB-302
Element				
Particulate Efficiency	2 Micron Nominal	2 Micron Nominal	2 Micron Nominal	2 Micron Nominal

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

HPBA Reservoir Adapters

Model	Element Connection	Reservoir Connection	
HPBA-101	1" Slip Fit	Flange No Mounting Holes	
HPBA-102	1" Slip Fit	1" MNPT	
HPBA-103	1" Slip Fit	3/4" MNPT	
HPBA-104	1" Slip Fit	Bayonet	
HPBA-105	1" Slip Fit	1" - 12 UNF	
HPBA-106	1" Slip Fit	1.5" - 16 UNF	
HPBA-110	1" Slip Fit	-w0-	TAN5
HPBA-114	1" Slip Fit	Flange 6 ANSI Mounting Holes	
HPBA-201	1" Slip Fit	1.125" - 16 UNF	
HPBA-403	3/8" MNPT	1/2" MNPT	
HPBA-G31	1" Slip Fit	G 1.25" - 11 BSPP	

BF Breathers High Flow Particulate Breathers

Control airborne contamination and extend the life of other filters in your system. BF Breathers go beyond ineffective filler/breather caps to protect your system with high capacity, high efficiency pleated glass media elements. Combine with Donaldson Hy-Pro Filter Assemblies and Fluid Conditioning Equipment for the ultimate in Total Systems Cleanliness.

hyprofiltration.com/

Tells the tale of your system.

BF Breathers are equipped with tattle-tale gages that capture the maximum vacuum level caused by rising and falling fluid levels to let you know exactly how your system is operating. And unlike those nagging kids, you'll be more than grateful for this tattle-tale.

Let it breathe.

The same Donaldson Hy-Pro Dualglass you trust to remove particulate from your hydraulic and lube oils pulls double duty in the BF Breathers by removing airborne contamination from incoming air as your reservoir levels change. Designed to withstand the constant flexing of hydraulic systems, Donaldson Hy-Pro filter media is the hands-down best at capturing and preventing contaminants from ever entering your systems.

The perfect fit.

Whether you're operating reservoirs with high cylinder return flows or large extrusion presses, BF Breathers offer the perfect fit for your system. And with numerous standard connections, you can set yours up straight from the box - no adapters required.

BF Specifications¹

Model	BF*256	BF*2511	BF*2517	BF*36	BF*311	BF*317
Height	12.4 in	18.1 in	23.7 in	12.4 in	18.1 in	23.7 in
lioigitt	31.5 cm	46.0 cm	60.2 cm	31.5 cm	46.0 cm	60.2 cm
Diameter	8.9 in	8.9 in	8.9 in	8.9 in	8.9 in	8.9 in
Diamotor	22.6 cm	22.6 cm	22.6 cm	22.6 cm	22.6 cm	22.6 cm
Weight	21 lb	22 lb	28 lb	25 lb	26 lb	32 lb
	9.5 kg	10.0 kg	12.7 kg	11.3 kg	11.8 kg	14.5 kg
Air Flow	1320 gpm	1450 gpm	1580 gpm	1825 gpm	2100 gpm	2375 gpm
/ 11 1 10 11	176 cfm	194 cfm	211 cfm	244 cfm	281 cfm	317 cfm
	4997 lpm	5489 lpm	5981 lpm	6908 lpm	7949 lpm	8990 lpm
Operating Temperature	30°F to 225°F (0°C to 105°C)					
Materials of Construction	Tube Assembly Nickel Plated Carbon Steel		Shell Stainless Steel		Element End C Synthetic – inci	aps + Handle inerates

¹Specifications are approximations taken from base models (Connection options B**/N**) and will vary according to options chosen. Connection option A** dimensions will vary slightly. Contact Donaldson Hy-Pro for exact specifications

BF Part Number Builder

BF		-	
Connection	Length	Media	Seal
Connection	A2 A3 B15 B2 B25 B3 N15 N2 N25 N3	2" ANSI flange 3" ANSI flange 1.5" BSPT 2" BSPT 2.5" BSPT 3" BSPT 1.5" NPT 2" NPT 2.5" NPT 3" NPT 3" NPT	
Length	6 11 17	6″ (15 cm) nomi 11″ (28 cm) nom 17″ (38 cm) nom	nal length filte inal length filt inal length filt
Media Selection	G8 D 1M 3M 6M 10M 25M	Dualglass 0.1µ absolute 0.3µ absolute 0.6µ absolute 1.0µ absolute 2.5µ absolute	
Seals	B V E-WS	Nitrile (Buna) Fluorocarbon EPR seals + stair	nless steel sup

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

@ 1100°F (593°C)

Spin-On Breathers G8 Dualglass Particulate Breathers + Adapters

Control solid contaminant ingression with high capacity, high efficiency pleated glass elements. Spin-On Breathers combine ease of installation and adaptability to prevent airborne contamination and extend the life of other filters in your system.

hyprofiltration.com/

Contamination Prevention 101.

Fluid contamination is the root cause of most hydraulic system failures and while most systems today utilize oil filters, it is not uncommon for airborne contamination to go overlooked altogether. By preventing airborne contamination ingression, Spin-On Breathers help reduce strain on system filters to extend the life of your fluids and protect your critical components.

Plug and play.

With common threaded and bayonet style adapters and numerous media options, Spin-On Breathers are a quick way to replace ineffective filler/breather caps right out of the box.

Total Systems Cleanliness.

Combining Spin-On Breathers with other Donaldson Hy-Pro Fluid Contamination Solutions will yield a clean, healthy, and reliable hydraulic or lubrication system.

Spin-On Breather Adapters

	\bigcirc	e			
Adapter Model	ADBB-75	ADBB-76	ADTB-75	ADTB-76	ADTB-76V
Material of Construction	Aluminum	Aluminum	Plated steel	Plated steel	Plated steel
Overall Length	2.58" (65.53 mm)	2.38" (60.45 mm)	3.70″ (93.98 mm)	1.75" (44.45 mm)	2.48″ (62.99 mm)
Element Thread Length	0.70″ (17.78 mm)	0.70″ (17.78 mm)	0.50″ (12.7 mm)	0.30" (7.62 mm)	0.35″ (8.89 mm)
Element Connection	1½" - 16 UN (HP75 series spin-on)	1″ - 12 UNF-2A (HP76 series spin-on)	1½″ - 16 UN (HP75 series spin-on)	1″ - 12 UNF-2A (HP76 series spin-on)	1 ″ - 16 UNF (HP76V series spin-on)
Reservoir Connection	1.87" pin length 1.40″ diameter boss	1.87" pin length 1.40" diameter boss	1¼″ NPT	¾″ NPT	¾″ NPT
Seals	Nitrile (Buna)	Nitrile (Buna)	Nitrile (Buna)	Nitrile (Buna)	Nitrile (Buna)

Spin-On Breather Installation Drawings

Spin-On Breather Part Number Builder

HP	B	
Flow Rate	Media Selection	
Flow Rate	75L4 290 gpm (1097 lpm), 39 cfm (66 m³/h) 75L8 290 gpm (1097 lpm), 39 cfm (66 m³/h) 76L4 212 gpm (802 lpm), 28 cfm (47 m³/h) 76L8 212 gpm (802 lpm), 28 cfm (47 m³/h)	
Media	G8 Dualglass	
Selection	 1M 0.1μ absolute air filtration 3M 0.3μ absolute air filtration 6M 0.6μ absolute air filtration 12M 1.0μ absolute air filtration 25M 2.2μ absolute air filtration 	

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

PTK1 Oil Analysis Patch Test Kit

With PTK1, oil cleanliness can be visually analyzed in the field without waiting for lab results and losing control of the analysis process. The PTK1 kit provides the opportunity to see the type, concentration, and actual size of particulate contamination inside the system.

hyprofiltration.com/

See the difference.

With the 100x magnification desktop microscope in every PTK1, examining and monitoring the condition of your oils has never been easier.

Protect your investment and your equipment.

From the sample bottles to the microscope, everything you need for running patch tests on your oil comes neatly packed away in the PTK1 case. Watertight, crushproof, and dust proof, the Pelican[™] Protector Case that houses every PTK1 protects your test equipment so whether you're stowing it for flights between plants or working in the dirtiest of environments, your test equipment is safe and ready when you need it.

Trending samples has never been easier.

Included in every PTK1 is a Patch Analysis Card Booklet to document and reference for the approximate ISO codes and types of contamination present in your system. Combined with using Donaldson Hy-Pro filter elements, you'll be amazed as you watch contamination disappear from your fluids, sample after sample.

PTK1 Specifications

Complete PTK-1 Kit includes:

100x Magnification, USB operated desktop microscope

Pelican[™] 1520 – watertight, crushproof, and dust proof case

1.2µm and 5.0µm filter test patches with patch mounting cards and adhesive covers to protect samples from ambient contamination and to preserve samples for future reference

Forceps for filter patch handling

Vacuum pump to extract fluid samples from the system and process 25 ml sample through filter patch

Machined stainless steel funnel assembly with ml fill line for accuracy

Sample bottles (6)

Solvent dispenser with dispensing filters

Visual correlation chart to determine approximate ISO Cleanliness Code of patch test kit sample

Visual correlation chart to determine type of particles captured on the patch

hyprofiltration.com/

Patch Analysis Card Booklet

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

VTK **On-Site Varnish Test Kits**

Condition monitoring is critical in staying ahead of lube oil degradation issues. Varnish Test Kits from Donaldson Hy-Pro provide on-site access to laboratory grade Membrane Patch Colorimetric (MPC) testing as a key piece in predicting potential varnish problems before unit trip or fail-to-start conditions occur, all according to the world recognized ASTM D7843-12 standard for the measurement of insoluble oxidation by-products.

hyprofiltration.com/

Unmistakably easy.

Specifically calibrated for MPC testing according to ASTM D7843-12, the Spectrophotometer in every VTK provides incredible ease of use in colorimetry testing for your fluids with results displayed right on the screen.

Bring the lab to you.

VTKs put the same equipment used in labs around the world directly at your disposal to give you access to the most accurate varnish potential testing and trending. Everything you need to properly prepare and analyze a filter patch for varnish potential comes included.

Results before your eyes.

Testing in-house provides the fastest results to understand the status of your fluid. With varnish removal filtration from Donaldson Hy-Pro and VTK on-site testing, you'll be amazed as your fluids become cleaner sample after sample.
VTK Specifications

Complete Varnish Test Kit includes:

¹MPC testing should be performed to specifications documented in ASTM D7843-12. For more information or to purchase a report, visit http://www.astm.org/Standards/D7843.htm For all up to date option details and compatibilities, please reference our Contamination Solutions Price List or contact customer service.

PN-1 On-Line ISO Code Particle Monitor

Get fast and accurate ISO cleanliness code readings from your hydraulic and lube oils in real time with the PM-1 Particle Monitor.

hyprofiltration.com/

Eliminate the guesswork.

Dedicating PM-1 to hydraulic and lube systems can eliminate the need for bottle sampling and let's you know how clean your oil is at all times. PM-1 can be integrated into operating software for constant monitoring and can also be set up to trigger alarms if a system gets too dirty, giving you complete control of your fluids and your systems.

Unmistakably easy.

As the PM-1 analyzes your fluids, the on-screen counts update in real time to show you the ISO cleanliness codes for the 4μ , 6μ , 14μ and 21μ channels in incredible clear and easy to read figures.

Perfectly integrated.

Add the PM-1 to almost any Donaldson Hy-Pro Filtration System with Special Option code "O" (where applicable) to get real time ISO Codes integrated directly on your filtration and always know exactly how clean your hydraulic and lube oils are.

PM-1 Specifications

Display	The device is calibrated to ISO 11943. It calculates and displays results according to ISO 4406:99, SAE AS 4059, NAS 1638 und GOST 17216.							
Voltage	9-33 V dc							
Operating Pressure	Up to 6,090 psi (420	bar) dynamic						
Protection Class	IP67	IP67						
Flow Rate	50-400 ml/min (requ	ired for operation)						
Fluid Connection	M16 x 2.0 (Minimess	M16 x 2.0 (Minimess®)						
Electric Connection	M12 x 1 (8 Pole)							
Data Memory	On-board 4MB stora	On-board 4MB storage capacity						
Fluid Compatibility	Mineral oils, phosphate esters and specified synthetics (Skydrol by special option only). Not for use with water glycol or other water based fluids. Water levels above saturation in any fluids will cause the PM-1 to malfunction.							
Temperature Range	Oil 14°F to 176°F (-10°C to 80°C)	Air 14°F to 176°F (-10°C to 80°C)	Storage -4°F to 176°F (-20°C to 80°C)					
Interface	RS-232, analog outp	ut 4-20 mA configurable, digital alarm o	output, digital input to start and stop readings					
Ordering	PM-1	PM-1 Particle Monitor						
Information	PM-1-PWRSUP-60 ¹	PM-1 electrical power supply for portable use (120V AC, 1P, 60 Hz to 24 V dc)						
	PM-1-PWRSUP-501	PM-1 electrical power supply for portable use (220V AC, 1P, 50 Hz to 24 V dc)						
	PM-1-PWRCAB	PM-1 9-33 V power cable with M-12 x 1 (8 pole) connection 15' (5 m) power cable plus 1 x 8 pole connection for PM-1						
	PM-1-HKIT-60	M-1-HKIT-60 Portability kit for PM-1. Includes: Pelican [™] case, sampling hoses for high pressure Minimess [®] & low pressure lube application adapters, outlet line flow control attachment, PM-1-PWRSUP-60 power supply (60 Hz) and PM-1-DAT data/power adapter.						
	PM-1-HKIT-50	Portability kit for PM-1. Includes: Pelican [™] case, sampling hoses for high pressure Minimess [®] & low pressure lube application adapters, outlet line flow control attachment, PM-1-PWRSUP-50 power supply (50 Hz) and PM-1-DAT data/power adapter.						
	PM-1-BR	PM-1 back mounting bracket with rul	ber vibration suppression					
	PM-1-USB USB adapter – RS-232 serial							
	PM-1-DAT ¹	15' (5 m) data cable with open ends						
	PM-1-FITLOW	Low pressure lube system fittings to connections. ² Suitable for low pressu minimum flow index 50,000 reading	replace standard Minimess® inlet & outlet re systems< 29 psi (2 bar) where achieving (50 ml/min) is not possible.					
	PM-1-SC ³	PM-1 Soft Calibration						
	PM-1-HC ³ PM-1 Hard Calibration							

¹For PM-1portable counting you must purchase the PM-1-DAT AND either the PM-1-PWRSUP-60 (for 60 Hz) or the PM-1-PWRSUP-50 (50 Hz) to power the unit. The unit cannot be powered with just the PM-1-PWRSUP-60 or -50. The PM-1-DAT allows for connection to RS232 data port for data acquisition and download. ³Minimess® is a registered trademark of Hydrotechnik GMBH. ³It is recommended that the unit receives a soft calibration every 2 years of service to ensure the unit is still operating as intended.

If soft calibration indicates the unit is not functioning properly, a hard calibration should be performed.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Donaldson.

HY-PRO

PFM75 Portable Fluid Monitor

Designed as a mobile on-line laboratory to measure particulate, water, and overall oil health, the PFM75 is an easy and cost effective way to track oil condition and optimize the efficiency of your hydraulic and lube assets. Take control of your oil analysis with the PFM75 to eliminate bottle sampling error and to get your results in real time without having to wait for the lab.

hyprofiltration.com/

Small size, huge results.

Portability is the first priority when you have to track the condition of all your plant's oils. That's why the PFM75 is designed to pair unmatched portability with comprehensive condition monitoring, all in a rugged package. Lightweight and easy to use, the PFM75 will revolutionize the way you track your oil cleanliness.

Powerful data. All day long.

Capable of providing measurements for more than 24 hours on a single charge when running without the pump, the PFM75 provides powerful insight into your fluid condition without the need to be tied down by power cords. And when it is time to recharge, you'll be back up and running in less than an hour.

Measurements on your time.

Sampling with the PFM75 can be carried out directly via a pressure line or the integrated pump to measure your oil condition quickly and easily. The integrated real-time clock adds a time stamp to all measured data which can also be marked with a freely definable measuring point indicator to make cataloging, tracking and trending your data easier than ever.

Results in front of your eyes. For immediate results, the PFM75's integrated printer

delivers all of your oil information with the push of a button. Internal data storage also allows for saving more than 1,250 data records which can easily be transferred for processing via the included USB-B adapter or SD card. You can even choose which measurement standard (ISO, SAE, NAS, & GOST) to quantify to make your data more accessible than ever.

Poor sampling port location? No problem.

In our experience, 90% of OEM sample port locations don't stand up to sampling best practices. Pair your PFM75 with Donaldson Hy-Pro's integrated sample port fittings and proper sampling techniques to provide best practice sampling and get the most accurate data for trending your oil condition time and time again.

Monitor on the move.

Supplied with everything you need to hit the ground running, the PFM75 is the perfect solution for monitoring your fluid conditions when and where you need it. To make it even easier, the power supply, hoses, couplings, and monitor all fit conveniently in the included accessory bag.

PFM75 Specifications

Operating Pressure	High Pressure Connection ¹ 73 - 4640 psi (5 - 320 bar)	With Pump Operation 0 psi (0 bar)					
Fluid Viscosity Range²	5 - 1000 cSt						
Operating Conditions	Fluid Temperature 32°F to 140°F (0°C to 60°C)	Ambient Temperature 14°F to 176°F (-10°C to 80°C)	Relative Humidity 0%-95% r.H. (non-condensing)			
Fluid Compatibility	Mineral oils (H, HL, HLP, HLP polyalkylenglycols (PAG), zir	D, HVLP), synthetic esters (HE ic and ash-free oils (ZAF), poly	TG, HEPG, HEES, HEPR), yalphaolefins (PAO)				
Wetted Materials	Chrome, aluminum, stainles epoxy resin, chemical nickel/ oxide, glass (DuPont QQ550)	s steel, Viton, steel, brass, HN gold (ENIG), soldering tin (Sn , gold, silver-palladium, sappl	BR, NBR, polyurethane resin, 96, 5Ag3CuO, 5NiGe), alumin hire, PVC (hoses)	um			
Device Power Supply	Power Supply 24 V dc	Power Consumption Max 8 A					
Power Adapter Power Supply	Power Supply 100 - 240 V ac (50/60 Hz). European and US plugs included	Power Consumption Max 4 A	Power at 24 V dc - Output Max 221 W				
Battery	Nominal Capacity 7500 mAh	Loading TimeRunning Time When Measuring Without Pump<1 h					
Display Particle Measurement	ISO 4406:99 0 - 28 (calibrated area 10 - 22)	SAE AS 4059E 000 - 12	NAS 1638 (based) ³ 00 - 12	GOST 17216 (based) ³ 00 - 17			
	Size Channels 4μm _[c] , 6μm _[c] , 14μm _[c] , 21μm _[c]						
Measuring Range Oil Parameter	Relative Permittivity 1 - 7	Relative Humidity 0 - 100%	Conductivity 100 - 800,000 pS/m	Temperature -4°F to 248°F (-20°C to 120°C)			
Measuring Accuracy	Particle Measurement (within calibr. range) ISO 4 / ISO 6 ±1	Particle Measurement (within calibr. range) ISO 14 / ISO 21 ±2	Relative Dielectric Number ⁴ ±0.015	Relative Humidity (10-90%)⁵ ±3% r.H.			
	Relative Humidity (<10,>90%)⁵ ±5% r.H.	Conductivity (100 - 2000 pS/m) ±200 pS/m	Conductivity (2000 - 800,000 pS/m) Typ. <10%	Temperature ±2 K			
Interfaces	USB-B, SD-card (SD or SD-H	C in FAT/FAT16/FAT32-data fo	rmat)				
Internal Data Memory	1250 readings (with time sta	mp)					

PFM75 Reference Guide

Ordering Information

	Part Number	Description				
Base Package	PFM75	PFM75 Portable Fluid Monitor unit with operating manual, power supply (100-240 V), power cable with both European and non-European plugs, low- pressure hose set including connection couplings, high-pressure hose, SD memory card, and carrier bag for PFM75 and accessories.				
Spare Parts	PFM75SP-0001	Set of covers for SD and USB ports				
	PFM75SP-0002	Hose set with couplings				
	PFM75SP-0003	Minimess [®] cable with 6.6 ft (2 m) M16 x 2				
	PFM75SP-0004	Paper rolls for thermal printer				
	PFM75SP-0005	Power supply				
	PFM75SP-0006	Power cable				
	PFM75SP-0007	Protection caps (2)				
	PFM75SP-0008	Suction connection				
	PFM75SP-0009	Protective strainer				
	PFM75-SC	Soft Calibration				

Minimess® is a registered trademark of Hydrotechnik GMBH.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Integrated Sample Port Fittings

Upgrade Existing Lines with Integrated Sample Ports for Best Practice Sampling

Best practice sampling.

Every sample port fitting comes assembled straight from the factory to ensure best practice samples are easier than ever. The fittings are set up to pull fluids directly from the center of flow through the angle cut pitot tube, providing consistently accurate readings.

Easy integration.

Designed to be integrated into existing lines with incredible ease, the Donaldson Hy-Pro Sample Port Fittings provide access to hydraulic and lube oil sampling where previously thought impossible.

Unmistakably accurate.

The down tube on each sample port fitting is laser etched to clearly indicate the position of the angle cut on the tube. Ensuring correct alignment and flow direction is easier than ever and with proper sampling procedure, you'll be pulling consistently accurate samples every time.

Flange or straight thread options.

Accurate and trend-able oil analysis has never been easier. Simply decouple the connection, add in your new fitting and reconnect, then get to work properly trending your fluid cleanliness. And with numerous connection types and sizes, there's a sample port fitting available for all of your applications.

Add-On kit

For applications with existing ports in place, the Add-On configuration delivers a seamless addition without the need to hassle with plumbing. Configured with the exact length and adapter for your existing pipe and port setup, the Add-On is the easiest way to make proper sampling a part of your maintenance plan.

Sample port options

Sample port valves come in a variety of options to fit your preferences and system requirements. From low pressure ball valves suitable for high viscosity/low pressure lube apps to Minimess[®] for high pressure hydraulics, you'll get the perfect solution no matter your application.

Installation's never been easier.

Step 1: Locate the connection in which to install your sample port fitting.

Step 2: Decouple the connection.

Step 4: Reconnect and tighten all fittings and hardware.

Reference Guide

Add-On Kit FTG-SAM-ASN6-FN12B-32-0

Swivel 90 with 6" (15 cm) nylon hose

1/4" ball valve with powder coated handle

Laser engraved alignment arrow -

Adapter for installation to existing port-

Angle cut pitot tube aligned to center of existing pipe

Not pictured:

Extended bolts: hardware supplied to be Grade 8, equivalent, or higher.

Add-On Kit Part Number Builder

FTG- SAM-A		Sample Nylon H	ose	Thread	Connection	Connecti	on Se	al	Special Options	Nominal	Port
Sample Port Valve	BV SN TP	Description 1/4" Ball valve with sample port and du 1/4" Ball valve wit Minimess® Test Po	1/4″ I Ist cap h Swi int	MJIC vel 90 and ny	ylon hose	Ope < 450 < 450 ≥ 450	e rating) psi (31) psi (31) psi (31	Pressu bar) bar) bar)	re	1100 0120	
Nylon Hose Length SN sample valve only	omit 6 8 10 12 14 16 18 20	BV or TP Sample V 6 in (15.2 cm) 8 in (20.3 cm) 10 in (25.4 cm) 12 in (30.5 cm) 14 in (35.6 cm) 16 in (40.6 cm) 18 in (45.7 cm) 20 in (50.8 cm)	alves			22 24 26 28 30 32 34 36	22 in (5 24 in (6 26 in (6 28 in (7 30 in (7 32 in (8 34 in (8 36 in (9	5.9 cm) 1 cm) 6 cm) 1.1 cm) 6.2 cm) 1.3 cm) 6.4 cm) 1.4 cm)			
Existing Port Thread Orientation	F M	Female Male	Fema		System Pipe	Mal		System	Pipe		
Connection Type	G J N S	G thread (BSPP) JIC NPT SAE	Syste Conr	m Pipe							
Connection Size	4 8 12 16	1/4" 1/2" 3/4" 1"	20 24 32	1 ¼″ 1 ½″ 2″							
Seal	B E V	Nitrile (Buna) EPR Fluorocarbon									
Special Options	S T1 T2	Stainless steel 1/4" T fitting with g 1/4" T fitting with g	gauge gauge	port + isolat port and tra	ion ball valve nsducer conr	ection +	isolatio	n ball val	ves		
System Pipe Diameter	4 8 12 16 20 24 32	1/4" 1/2" 3/4" 1" 1 ¼" 1 ½" 2"	40 48 64 80 96 112 128	2.5" 3" 4" 5" 6" 7" 8"		Syster	n Pipe	Pipe Diame	eter		
Approx Port Extension Length	0 4 8 12 16 20 24 32	0" 1/4" 1/2" 3/4" 1" 1 ½" 1 ½" 2"	40 48 64 80 96 112 128	2.5" 3" 4" 5" 6" 7" 8"		Ext	ension Length				

Minimess® is a registered trademark of Hydrotechnik GMBH.

300

Part Number Builder

FTG-SAN	Л-				-			_			
	Сог Тур	nfiguration le	Sample Port Valve	Nylon Hose Length (SN only)	Connection Type	Connection Size	Seal		Special Options	_	
Configuration Type	SM SU T	Sandwic Sandwic In-line "T	h plate wit h plate wit ſ″ fitting	h Metric bolts h US standard	s included (Gra d/Imperial bolt	de 8, equiv s included	valent, or high (Grade 8, equ	ner fa livale	asteners s ent, or hig	upplied) her fasteners supp	blied)
Sample Port Valve	BV SN TP	Descrip 1/4" Ball sample p 1/4" Ball Minimes	otion valve with ort and dus valve with s®Test Poin	1/4″ MJIC st cap Swivel 90 an nt	nd nylon hose	Ope < 450 < 450 ≥ 450	erating Pres D psi (31 bar) D psi (31 bar) D psi (31 bar)	ssur	e		
Nylon Hose Length SN sample valve only	omit 6 8 10 12 14 16 18 20	BV or TP 6 in (15.2 8 in (20.3 10 in (25 12 in (30 14 in (35 16 in (40 18 in (45 20 in (50	Sample Va 2 cm) 3 cm) .4 cm) .5 cm) .6 cm) .6 cm) .7 cm) .8 cm)	lves		22 24 26 28 30 32 34 36	22 in (55.9 cr 24 in (61 cm) 26 in (66 cm) 28 in (71.1 cr 30 in (76.2 cr 32 in (81.3 cr 34 in (86.4 cr 36 in (91.4 cr	m)) n) n) n) n)			
Connection Type	"SN A C F	I″ + "SU ANSI fla Code 62 Code 61	" Configu nge flange flange	System Pipe	Connection	"T" G J N S	Configura G thread (BS JIC NPT SAE	tion SPP)	System Pipe	Connection	
Connection Size	4 8 12 16 20 24 32	1/4" 1/2" 3/4" 1" 1 ¼" 1 ½" 2"									
Seal	B E V	Nitrile (B EPR Fluoroca	una) rbon								
Special Options	S T1 T2	Stainless 1/4" T fitt 1/4" T fitt	s steel ing with ga ing with ga	auge port + is auge port and	olation ball va I transducer co	lve nnection +	isolation ball	l valv	/es		

Minimess® is a registered trademark of Hydrotechnik GMBH.

OA-TO Turbine Oil ACE[™] Analysis

Industry leaders Donaldson Hy-Pro and EPT Clean Oil[™] have partnered to offer two levels of ACE[™] testing for turbine oils. Each of these test packages is compliant with ASTM D4378 (the Standard Practice for In-Service Monitoring of Mineral Turbine Oils for Steam, Gas, and Combined Cycle Turbines). As such, ACE[™] testing provides a complete picture of your turbine oil's condition, including its physical properties, contaminants, breakdown levels and remaining lifetime.

Donaldson.

44.3 42.6 43.3 43.6 hyprofiltration.com/

Monitor Varnish Levels

During service, oil breakdown inevitably leads to varnishformation. This varnish is the single most-common cause of oil-related failures and costly downtime in turbine applications. Despite the impact that varnish has, many oil analysis programs fail to regularly monitor varnish levels. ACE Initial and Milestone Assessments always evaluate your fluid's varnish potential using ASTM D7843-compliant MPC (membrane patch colorimetry) testing. Regular MPC analysis is imperative for turbine oils because you're blind to varnish and the problems it causes without it!

Forward Looking

Most oil analysis focuses on your turbine oil's current health. ACE Assessments take things one step further by monitoring antioxidant levels using LSV (linear sweep voltammetry) as outlined in ASTM D6971. This not only shows you where your oil is at today, but it can be used to evaluate your lubricant's remaining lifetime so that you can plan your oil maintenance more effectively tomorrow.

on : Curt Mortin 317.849.3535 (

See the Big Picture

By following the ASTM D4378 spec, ACE Initial Assessments provide comprehensive information about your critical turbine lubricants, including: whether they're fit for service and whether an oil-related failure may be in progress or imminent. If problems are noted, ACE Assessments identify solutions and then make use of Milestone testing to trend and document their effectiveness so that you can achieve trouble-free operation for your most critical production assets. These solutions also allow you to extend your turbine oil's lifetime, eliminating the need for costly bleed-and-feeds/fluid replacement, while reducing the environmental impact of your operations.

Analysis Specifications

ACE [™] Initial Assessments	ACE [™] Milestone Assessments
OA-602996	OA-602997
This test package establishes your turbine oil's current condition and highlights any potential problems. It then takes the next step by actually cleaning your oil sample with patented ICB [®] filtration. Our ACE Initial Assessments don't just tell you what we can do for your	This test package fully documents the results that you've achieved following the installation of Donaldson Hy-Pro/EPT Clean Oil filtration systems. Pull "Milestone" samples when you start and every month etc. thereafter to track the improvements in your critical
don't just tell you what we can do for your	to track the improvements in your

	don't just tell you what we can do for your turbine oil, they show you.	to track the improvements in your critical fluid's condition.
Analysis Package Includes	 MPC Varnish Potential & Patch Weight Acid Number and Strong Acid Number by Potentiometric Titration Oil Color Water Content by Karl Fischer Titration 	 Demulsibility (for steam turbine oils) Dissolved Metals by ICP-OES Antioxidant Levels by LSV Viscosity at 40°C (104°F)
Recommended Frequency	Monthly to Quarterly	
Testing Standards	ASTM D7843 ASTM D664 ASTM D1500 ISO 4406 and 11500 ASTM D6304	ASTM D1401 ASTM D5185 ASTM D6971 ASTM D445
Sample Size Required	ACE Initial Assessment: 1,000 mL (sample bottle included)	ACE Milestone Assessment: 500 mL (sample bottle included)
Fluid Compatibility	GasTurbine Oils SteamTurbine Oils Compressor Oils R&O Lube Oils	Mineral Oil-Based Hydraulic Fluids AW Hydraulic Oils Polyol Ester-Based Lubricants Jet Engine Oils

Sample Report

Part Numbers

Description

hyprofiltration.com/

OA-PE Phosphate Ester ACE[™] Analysis

Industry leaders Donaldson Hy-Pro Filtration and EPT Clean Oil[™] have partnered to offer two levels of ACE[™] testing for fire-resistant phosphate ester (PE) lube oils and hydraulic control fluids. Each of these test packages is compliant with ASTM D8323 (the Standard Guide for Management of In-Service Phosphate Ester-based Fluids for Steam Turbine Electro-Hydraulic Control EHC Systems). As such, ACE[™] testing provides a complete picture of your PE's condition, including its physical properties, contaminants and breakdown levels.

Donaldson.

hyprofiltration.com/

Go Beyond Routine Analysis

Most PE test packages are limited to routine metrics like acid number, water content, particle count and resistivity. These "routine" tests are important but are limited in their ability to identify fluid condition-related problems. They also fail to meet the regular testing requirements outlined in ASTM D8323. By following this ASTM spec, ACE Assessments allow you to see harmful contaminants, including strong acids, phenols, varnish, carbon, and soot. These contaminants have well-established negative impacts on the performance and reliability of critical hydraulic control systems and have led to costly failures.

Monitor Varnish Levels

During service, PE breakdown leads to varnish-formation. This varnish causes servo and soldenoid valve-sticking, which is of particular concern in hydraulic control systems. Despite the impact that varnish has, most PE analysis programs fail to regularly monitor varnish levels. ACE Initial and Milestone Assessments always evaluate your fluid's varnish potential using ASTM D7843-compliant MPC (membrane patch colorimetry) testing and established best practices specific to phosphate esters. Regular MPC analysis is imperative because you're blind to varnish and the problems it causes without it!

Restoration Focussed

PEs don't have protective additive packs and are often condemned due to contamination that could have been removed. By following the ASTM D8323 spec, ACE Initial Assessments provide comprehensive information about your critical fluids and highlight issues that "routine" PE tests are blind to. If problems are noted, ACE Assessments identify solutions and then make use of Milestone testing to trend and document their effectiveness so that you can achieve troublefree operation for your critical production assets. These solutions also allow you to extend your PE fluid's lifetime, eliminating the need for costly bleed-and-feeds/fluid replacement, while reducing the environmental impact of your operations.

Analysis Specifications

2	0	
-0	υ	ວ

	ACE [™] Initial Assessments	ACE [™] Milestone Assessments
Part Numbers	OA-602996	OA-602997
Description	This test package establishes your fluid's current condition and highlights any potential problems. It then takes the next step by actually cleaning your PE sample with patented ICB® filtration. Our ACE Initial Assessments don't just tell you what we can do for your PE, they show you.	This test package fully documents the results that you've achieved following the installation of Donaldson Hy-Pro/EPT Clean Oil filtration systems. Pull "Milestone" samples when you start and every month etc. thereafter to track the improvements in your critical fluid's condition.
Analysis Package Includes	 MPC Varnish Potential & Patch Weight Acid Number and Strong Acid Number by Potentiometric Titration Oil Color Contaminant Phenol Levels by LSV 	 ISO Particle Count Water Content by Karl Fischer Titration Dissolved Metals by ICP-OES Viscosity at 40°C (104°F) Resistivity at 20°C (68°F)
Recommended Frequency	Monthly to Quarterly	
Testing Standards	ASTM D7843 ASTM D664 ASTM D1500 ASTM D6971 ISO 4406 and 11500	ASTM D6304. ASTM D5185 ASTM D445 ASTM D1169
Sample Size Required	ACE Initial Assessment: 1,000 mL (sample bottle included)	ACE Milestone Assessment: 500 mL (sample bottle included)
Fluid Compatibility	Phosphate Ester-Based Hydraulic Fluids Phosphate Ester-Based Lube Oils	

Sample Report

hyprofiltration.com/

VUD Questionnaire

Name	Phone
Position	Email
Company	Fax
Address	

System Questions

Oil Characteristics	
ISO Cleanliness	
Water Content (PPM)	
Water Ingress	
Current Unit	
Why Change?	
Objective in hours (High PPM to Target PPM)	

Location Questions

Temperature	
Utility Services Available	
General Environment (i.e. dry, wet, dust, etc)	
Explosion Proof Requirement?	
Unit	
Plant Application (i.e. turbine, paper mill, etc)	

Information & Respond

Reply Required (in days)

Customer Objectives

Filter Application Data Sheet

Name					Company			
Phone					Email			
Mobile					Fax			
System Description								
Critical System Components								
Filter Location (pressure, return, etc)								
Existing System Filtration (location, micron rating)								
Fluid Information	Manufact	urer/Tradena	ime:					
	ISO VG:				S.G.:			
	Viscosity	cSt:			Viscosity SL	JS:		
	Emulsion	Mix:			Water Conte	ent (PPM):		
Operating Temperature Range	From:		To:		□°F □°C			
Cold Start Temperature		□ °F	D °C	Time Interval to	Operating Te	mp:		
Contaminant Ingression Rate & Description (coal mill, paper mill)	Low		🗆 Mediur	n	□ Severe			
Contaminant (wear metal, gel, etc)								
Maximum Clean Element ΔP				BARD	(Typically 15	5-30% indicato	or trip setting)	
Maximum Loaded Element ΔP				BARD	(dependent	on bypass va	lve setting)	
Element Change Interval								
Target ISO Cleanliness Code (per ISO4409:1999, 4/6/14)								
System Pressure	Normal:			Maximum:				BARD
Pump Flow Rate	Normal:			Maximum:			GPM	
Return Flow Rate	Normal:			Maximum:			GPM	
Seal Material	□ Nitrile	(Buna)	Viton	EPR	□ Silicone	Other:		
Bypass Valve	□ None	□ 3 psi (0.21 bar)	□ 5 psi (0.34 bar)	□ 15 psi (1.03 bar)	25 psi (1.72 bar)	□ 50 psi (3.45 bar)	□ 102 psi (7.0 bar)	
Differential Pressure Indicator	□ Visual F	Pop-Up [Electrical	Uisual + Electrical	□ ΔP Ga	uge □∆F + El	? Gauge ectrical	□ None
Mounting Arrangement (bowl down, top loading, etc)								
Port Configuration (in-line 180°, 90°, dual inlet, etc)								
Other Requirements (duplex, reverse flow, bi-directional, etc)								
Space Restrictions (overhead)								
Quantity and Required Delivery								
Notes:								

307

Non-Standard Filter Element Worksheet

Name		Con	npany					
Phone		Ema	ail					
Part Number				Eleme	nt OEM			
Element Style*		(Select from g	rid pg.2)	Tempe	rature F	Range		
Collapse Rating		(psid/bar) Flui	d Type +	- Name	+ Grade	Э		
Quantity Required				Estima	ated Anr	nual Usag	je	
End Cap Material	Plated Steel	Stainless Ste	el	Plastic N	lolded	Alumi	num	
Support Tube	No-coreless	Inner Only	Oute	r Only	lnne	er + Outer		
Bypass Valve	Yes	No		Bypass	s Setting	g		(psid/bar)
Media Type	Cellulose	Glass	Wire Wire	Mesh	Stai	nless Fibe	er	
Media Rating						(nomir	nal, absolute, βx	= ?, βx _[c] = ?)
Seal Location	None	Single End	Dou	ole End				
Seal Type	Captured O-Rin	g Male O-	Ring	Flat G	Basket	Grom	met	
Seal Material	Buna	Viton	EPR		Silic	one	Neoprene	
Flow Direction	In to Out	Out to In						
Additional Componter Required	nts						(Spring	, Seals, Etc.)
Dimensions	Dimension boxes H, to the drawing. When installed and that the the o-ring. With capt	I, L have been le n measuring for o caliper blade m ured o-ring seal o	eft blank t dimension akes only and caps	or use in ns E and / very ligh the B or	a sketch F (o-ring ht contac D dimen	or other fe touch-off) t with the c	eatures that need be sure that the p-ring. Do not app pically be smaller	to be added p-ring is still ly pressure to than the A or

C dimension respectively.

A (id1):	E (ort1):	1:	
B (id1a):	F (ort2):	J (od1):	
C (id2):	G (oal):	K (od2):	
D (id2a):	H:	L:	

*If your element style is not on the grid (see page 2), please send a sketch and/or digital photos

Non-Standard Filter Element Worksheet

hyprofiltration.com/

Terms and Conditions

Standard Terms

Minimum Invoice \$50.00 Net

F.O.B.: Anderson, Indiana Terms: Net 30

A 11/2% per month (18% annual percentage rate) finance charge may be added to your account on any amount that is more than 30 days past due.

The items described in this document are hereby offered for sale at prices to be established by Donaldson Hy-Pro, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any item described in its document, when communicated to Donaldson Hy-Pro, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of this offer.

- 1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgements and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby objected to. No such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's asceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions due herein, including any terms in addition to, or inconsistent with those contained in Buyer's offer. Acceptance of Seller's products shall in all events constitute such assent.
- Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.
- 3. Element Warranty: Seller warrants that the items sold hereunder shall be free from defects in material or workmanship for a period of 365 days from the date of installation by the end-user. This warranty comprises the sole and entire warranty pertaining to items provided hereunder, Seller makes no other warranty, guarantee, or representation of any kind whatsoever, all other warranties, including but not limited to, merchantability and fitness for purpose, whether express, implied, or arising by operation of law, trade usage, or course of dealing are hereby disclaimed. Notwithstanding the foregoing. There are not warranties whatsoever on items built or acquired wholly or partially, to buyer's designs or specifications. Excludes manufactured equipment, see Equipment Warranty.
- 4. Element Shelf Life: 5 years from the manufacturing date marked on the product. Seller will not accept any warranty claims for products which at the time of installation have a manufactured date greater than 5 years. ICB elements have a shelf life of 1 year. Please note that the conditions under which filters are stored can have a significant impact upon the shelf life of the filter; i.e., conditions of excessive temperatures or exposures to certain chemical environments can have an adverse effect on shelf life.
- 5. Limitation of Remedy: Seller's liability arising from or in any way connected with the item sold or this contract shall be limited exclusively to the repair or replacements of the items sold or refund of the purchase price paid by Buyer, at Seller's sole option. In no event shall Seller be liable for any incidental consequential or special damages of any kind, or nature whatsoever, including but not limited to lost profits arising from or in any way connected with this agreement or items sold hereunder, whether alleged to arise from breach of contract, express or implied warranty or in tort, including without limitation, negligence, failure to warn or strict liability.
- 6. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold hereunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless accepted by Seller in a written amendment to this Agreement. Acceptance of any such requested modifications or cancellation shall be upon such terms and conditions as Seller may require. Special (non-catalog) articles are not cancelable or returnable. Subject to a 20% restocking charge.
- 7. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller, which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.
- 8. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.
- 9. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are

exclusive of excise, sales, use, property occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items, sold hereunder. If any such taxes must be paid by Seller or if Seller is liable for the collection of such tax, the amount thereof shall be in addition to the amounts of the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax imposed by any taxing authority, Buyer shall save Seller harmless from and against any such tax, together with any interest or penalties thereon which may be assessed if the items are held to be taxable.

- 10. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of the Seller (hereinafter 'Events of Force Majeure'). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or regulations of any government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.
- 11. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire Agreement concerning the items sold, and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the state of Indiana. No actions arising out of the sale of the items sold hereunder of this Agreement may be brought by either party more than two (2) years after the cause of action accrues.
- 12. Packaging and Shipping: Items are provided with standard commercial packaging, labeling, painting and inspection. Prices and discounts are based on standard commercial packaging only. Donaldson Hy-Pro reserves the right to make partial shipments at its discretion.
- 13. Returns: Contact Donaldson Hy-Pro for a Return Goods Authorization (RGA) number. Returns will not be accepted without a complete RGA number attached to the product or shipping documents. Returned material must be in saleable condition, in original packaging and sealed. Elements may be returned within four years of the manufacturing date. ICB elements are not eligible for return. Returns must be received by Donaldson Hy-Pro within 45 days after an authorization (RGA) number is issued. Returns are subject to a 20% restocking charge.
- 14. Payment: Shall be made by Buyer net 30 days from the date of delivery of the items purchased hereunder. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Seller receives notice thereof within 30 days after Buyer's receipt of the shipment.
- Indemnity for Infringement of Intellectual Property Rights: Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Part 10. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets (hereinafter 'Intellectual Property Rights'). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer bases on an allegation that an item sold pursuant to this contract infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations or infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If any item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party. Seller may at its sole expense and option, procure for Buyer the right to continue using said item, replace or modify said item so as to make it noninfringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing. Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed items delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyers sole and exclusive remedy for infringement of Intellectual Property Rights. If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer, Buyer shall defend and indemnify Seller for all costs, expenses or judgments resulting from any claim that such item infringes any patent, trademark, copyright, trade dress, trade secret or any similar right.

Bulletin # MKTTC2014/12

310

Equipment Warranty

Donaldson Hy-Pro manufactured equipment is warranted to be free from defective materials and workmanship for a period of one year from the date of shipment when used within the normal working parameters for which the equipment was designed. Donaldson Hy-Pro assumes no responsibility for unauthorized installation of any added components, removal or repair of originally installed components, or alterations or rewiring of originally supplied equipment. Any such changes without written instructions or prior approval from Donaldson Hy-Pro will void all warranties.

If any Donaldson Hy-Pro supplied equipment does not perform as warranted, it will be repaired or replaced at Donaldson Hy-Pro's discretion. If deemed defective due to improper use, installation, start-up, or maintenance, Donaldson Hy-Pro reserves the right to charge the Purchaser with the full costs associated with warranty replacement. Donaldson Hy-Pro will ship warranty replacements via standard ground service. If other modes are required, the customer may be liable for costs incurred. It is the customer's responsibility to properly ship, freight prepaid, all item(s) to be returned to Donaldson Hy-Pro. Shipping insurance is recommended. This warranty does not apply to parts, which through normal use require replacement during the warranty period.

Donaldson Hy-Pro's liability under this warranty shall be limited to repair or replacement. Reasonable labor costs for warranty repairs may be reimbursed with the prior approval from Donaldson Hy-Pro. In no event, however, will Donaldson Hy-Pro be liable for any consequential damages to other equipment. This warranty shall not apply to any assembly or component part of the equipment which has been furnished by the Purchaser.

Except for the express warranty set forth above, Donaldson Hy-Pro hereby disclaims all warranties, expressed or implied, to Purchaser, including but not limited to, warranty of fitness for a particular purpose and warranty of merchantability. Donaldson Hy-Pro shall not be liable for any incidental or consequential damages which might arise out of the use of this property.

Equipment Warranty Rates & Times

Warranty labor will be calculated according to the following schedule. Warranty repairs must be pre-approved by Donaldson Hy-Pro to be eligible for reimbursement. For all other repairs, contact Donaldson Hy-Pro.

Warranty Rates

Labor - \$100/hr Travel - \$75/hr

V1 Vac-U-Dry Vacuum Dehydrators

V1 Vac-U-Dry Vacuum Dehydrators Flow switch - 0.5hr Oil pump swap - 1.0hr Oil pump motor swap - 0.5hr Vacuum pump swap - 1.0hr Heater element - 1.0hr ICV solenoid - 0.5hr Condenser Motor - 1.0hr D.P Gauge swap - 0.5hr Vacuum gauge - 0.5hr Pressure gauge - 0.5hr LOGO/PLC swap - 1.5hr Other control panel components - 1.0hr

V3-V60 Vac-U-Dry Vacuum Dehydrators

Flow switch - 1.0hr Oil pump swap - 1.5hr Oil pump motor - 1.0hr Vacuum Pump swap - 2hr Vacuum Pump Motor swap - 1hr Heater element - 1.5hr ICV Solenoid - 1.0hr Condenser/motor - 1.0hr D.P Gauge swap - 0.5hr Pressure gauge - 0.5hr Flow meter - 0.5hr LOGO/PLC swap - 1.5hr Vacuum gauge - 0.5hr Other Control Panel Components - 1.0hr Moisture sensor swap - 0.5hr Foam sensor swap - 0.5hr Condensate Solenoid valve - 0.5hr Condensate drain switch - 0.5hr Therma couple swap - 1hr Condensate tank seal - 0.5hr Vacuum chamber seal - 0.5hr Solid State Relay - 0.5hr

Equipment Warranty Rates & Times

COT - Turbine Oil Coalesce Skid

Flow switch - 1.0hr Oil pump swap - 2.0hr Oil pump motor - 1.0hr Therma couple swap - 1hr Heater element - 1.5hr ICV Solenoid - 1.0hr Water Drain solenoid - 1.0hr Pressure gauge - 0.5hr D.P Gauge swap - 0.5hr Flow meter - 1.0hr LOGO/PLC swap -1.5hr Solid State Relay - 0.5hr Water totalizing meter - 0.5hr Other Control panel components - 1.0hr

COD - Diesel Fuel Conditioning Skid

Flow switch - 1.0hr Oil pump swap - 2.0hr Oil pump motor - 1.5hr D.P Gauge swap - 0.5hr ICV Solenoid - 1.0hr Water Drain solenoid - 1.0hr Pressure gauge - 0.5hr Flow meter - 1.0hr LOGO/PLC swap - 1.5hr Water totalizing meter - 0.5hr Other Control panel components - 1.0hr

HS - Heater Skid

Flow switch - 1.0hr Oil pump swap - 2.0hr Oil pump motor - 1.5hr Therma couple swap - 1hr Heater element - 1.5hr ICV Solenoid - 1.0hr Pressure gauge - 0.5hr Flow meter - 1.0hr LOGO/PLC swap - 1.0hr Solid State Relay - 0.5hr D.P Gauge swap - 0.5hr Other Control panel components - 1.0hr

³¹⁴ Merchandise Return & Warranty Authorization Policy

Any merchandise returned to the factory for credit or warranty replacement must be accompanied by a completed Return Goods Authorization (RGA) form. To obtain a RGA number and form you must contact Customer Service at 317.849.3535. All shipments must be sent to the factory freight prepaid, unless otherwise approved. Shipping insurance is recommended. Returns must be sent to the correct factory location, Customer Service will confirm the return location.

Donaldson Hy-Pro	
6810 Layton Road	
Anderson, IN 46011	

Donaldson Hy-Pro West 1704 64th Ave, Suite B Vancouver, WA 98661

In the case of multiple item returns, all items must be tagged with possible causes of failure (if applicable). Please mark the outside of each shipping carton with the RGA number.

Return Disposition: Elements and Equipment

- 1. Upon request, an authorized RGA number and form will be issued to the customer.
- 2. Any items returned must be in unused condition, unless otherwise authorized.
- 3. If items are returned for a customer related error a restocking fee up to 20% will be applied.
- 4. If items are returned for a Donaldson Hy-Pro related error a full credit will be issued.
- 5. Credit will not be issued on items which are no longer in specification with current design, were manufactured more than 12 months prior to the return date, or were damaged in return shipping. Donaldson Hy-Pro will determine if the items are suitable for return.
- 6. If the return material is not received within 45 days from the date of issue, Donaldson Hy-Pro will cancel the RGA and reserves the right to not accept the return, unless otherwise authorized.
- 7. Items returned shall be shipped to the factory freight prepaid. Shipping insurance is recommended.

Equipment Warranty Claims: Defective Component Return

- 1. Contact the factory for equipment help and troubleshooting.
- 2. If required, a warranty RGA number and form will be issued to the customer with pre-approved labor hours and rates for the repair.
- 3. The customer must return the defective item(s) to the appropriate plant indicated on the RGA to receive credit for parts and/or labor.
- 4. The customer must issue a PO for the replacement part to be sent in advance of the plant approving the warranty claim.
- 5. Donaldson Hy-Pro reserves the right to refuse warranty coverage if:
 - The item(s) are deemed defective as a result of inappropriate use, installation, start-up, improper maintenance or during return shipping.
 - The warranty claim is not received by Donaldson Hy-Pro within 45 days of the date of issue, unless otherwise authorized.
- 6. Items returned shall be shipped to the factory freight prepaid. Shipping insurance is recommended.
- 7. Upon warranty approval, Donaldson Hy-Pro will credit the customer for the advanced replacement part or provide a suitable replacement part if not yet purchased by the customer.
- 8. If the item has been determined not to have a manufacturing defect and is not suitable for repair, the customer will be sent a disposition report.

Note: All correspondence must reference the RGA# to ensure proper tracking return or claim.

ATEX Recommendation for the use of fluid filter and maintenance indicators in hazardous zones according to Directive 2014/34/EU

Fluid Filters	Filters (hydraulic-, lubrication-oil-, air breather-) in fluid systems are not subjective to this directive. Fluid filters do not require a CE- marking.
	For fluid filters to be used in hazardous zones, the ignition sources have to be analyzed by the operator, considering the complete installation.
	During filtration of fluid and gases, electrostatic charge may occur on the filter element, the filter housing and the fluid – especially when glass fiber filter elements are used.
	For use in hazardous zones, Donaldson Hy-Pro recommends to use only metal filter housings and to connect the housing electrically to ground.
	These filters do not possess any external ignition source.
	The earthing is realized by using the clamping bolts. The maximum content of magnesium is less than 7.5%.
	The size of the largest projected non-conducting areas are smaller than 100 sqcm (400 sqcm if a conducting framing is provided).
	According to DIN EN 13463, the Donaldson Hy-Pro fluid filters are suitable for the use in applicance group II category 2 G/D up to 120 Deg C.
	The function of the electrical maintenance indicator is described below.
Maintenance Indicators	The electrical maintenance indicators provided with Donaldson Hy-Pro released products are simple electrical devices according to DIN EN 60079-11, without their own voltage supply.
	The electrical components consist of reed-contacts, bimetal switches, plug connections and terminal clamps.
	For equipment group II, category 2 G (zone 1) and category 2 D)zone 21), these simple electrical components can be used acc. EN 60079-14 and EN241-11 in intrinsically safe circuits [EEX ib] without making and certification.
	The EN 60079-12 (gas) and EN 61241-14 (dust) installation regulations have to be observed as well as the national security terms and accident prevention regulations.
	The electrical utilities are attributed to category ib and temperature class T5.
	If the electrical upper part is used, conventional (intrinsically safe circuit), it will not present itself as a heat source.
	Usage in EX-zones is possible when the indicators are connected intrinsically safe (EX-i).
	For that purpose, a switch amplifier with an intrinsically safe input is required. The switch amplifier must be installed outside the EX-zone, leaving only the intrinsically safe wires in contact with the hazardous zone.

315

³¹⁶ FLA Estimated Amp Draw

FSLD

Flow	HP	Pow	er Op	otion							
Rate	(kVV)	12	X12	22	X22	23	X23	46	X46	57	X57
0.5-2	0.5 (0.37)	7.4	6.6	3.6	3.1	1.9	1.6	0.95	0.8	0.69	1.1
5	1 (0.75)	12.8	13	6.4	6.2	3.7	3.2	1.7	1.6	1.3	1.1
10	2 (1.5)	17.6	23.2	10	11.5	8.8	11.3	3	2.9	2.3	2.2
22-32	5 (3.7)	NA	NA	22	23.5	23	8.4	6.5	4.2	5.2	5.2

CFU, FCLCOD, FCLCOT, FSLCOD

Flow	HP	Pow	er Op	otion													
Rate	(kVV)	11	X11	12	X12	21	X21	23	X23	40	X40	46	X46	52	X52	57	X57
0.5-5	0.5 (0.37)	7.2	6.4	7.4	6.6	3.6	3.1	1.9	1.6	0.86	0.8	0.95	0.8	0.89	1.3	0.69	1.1
10	1 (0.75)	12.4	12.4	12.8	13	6.4	6.2	3.7	3.2	1.85	1.9	1.7	1.6	1.5	1.3	1.3	1.1
20	1.5 (1.1)	16	17	15	16	8	9	5	4.4	2.3	2.8	2.3	2.2			1.8	2.2

SVR

Model	HP	Pov	Power Option														
	(kVV)	11	X11	12	X12	21	X21	23	X23	40	X40	46	X46	52	X52	57	X57
1200	1 (0.75)	12.4	12.4	13.2	13	6.4	6.2	3.7	3.6	1.6	3.3	1.7	1.8	1.3	1.3	1.1	1.1
2400	1.5 (1.1)	16	16.5	15	15.5	8	8.5	5	4.4	2.3	2.8	2.3	2.2	2	2.4	1.8	2.2

FC, FCL, FPL, FSL, FSW, FSTO, FSA, FSJL

Flow	HP	Pow	ver Op	otion													
Rate	(kVV)	11	X11	12	X12	21	X21	23	X23	40	X40	46	X46	52	X52	57	X57
0.5-4	0.5 (0.37)	7.2	6.4	7.4	6.6	3.6	3.1	1.9	1.6	0.86	0.8	0.95	0.8	0.89	1.3	0.69	1.1
5-10	1 (0.75)	12.4	12.4	12.8	13	6.4	6.2	3.7	3.2	1.85	1.9	1.7	1.6	1.5	1.3	1.3	1.1
22-32	3 (2.2)	NA	NA	NA	NA	13.2	14	8	8.4	4.4	5.2	3.8	4.2	3.2	3.5	3.1	3.3

*Equipment with on board PM-1 (O Option) may have higher power motors and higher amp draw. Contact factory.

Indicator Wiring Diagrams

PFH 131, 152, 419, 840 PF2, PFH131, PFH152, PFH419, PFH840 **"DX" INDICATORS** PF2 **"L" INDICATOR OPTION** DIN 43650A PLUG & RECEPTACLE DIN 43650A PLUG & RECEPTACLE DIN 43650A PLUG & RECEPTACLE WITH CABLE CLAMP WITH CABLE CLAMP WITH CABLE CLAMP ╧ C SPDT SWITCH -SPDT SWITCH 1 - COMMON SPDT SWITCH C - 24 V DC Common (-) 2 - NC 1 1 = COMMON 1 - 24 V DC (+) 3 - NO 1 2 2 2 = NC2 - NC 3 = NO3 - NO SWITCHING VOLTAGE: MAX 120 V AC / 175V DC ALTERNATING CURRENT: 250 V AC 5 AMPS 24 V DC MAXIMUM VOLTAGE 0.25 AMP MAX SWITCHING CURRENT: MAX. 0.17A AC / 0.25A DC SWITCHING POWER: 3 WATT MAX POWER MAX. 3.5 VA AC / 5W DC DIRECT CURRENT RESISTIVE VOLTAGE: 220 INDUCTIVE LOAD AMPS: 0.25 LOAD AMPS: 0.10 F8, PF4 LFIND-F,D,H MF3, S409 For FSL, FCL, FCLCOD, FSLCOD, FSTO, FSA, FSJL, DIN 43650A PLUG & RECEPTACLE DIN 43650A PLUG & RECEPTACLE SVR, LF, LFM, DLF, DLFM, FPL&FC "D3" OPTION WITH CABLE CLAMP WITH CABLE CLAMP STANDARD PORT SPDT SWITCH SPDT SWITCH 2 1 - COMMON 1 - COMMON 1 - COMMON 2 - NC 2 - NO 2 - NO 3 - NO 3 - NC 3 - NC 2 TYPE: SPDT A PROTECTIVE CONDUCTOR OPTION: Н TERMINAL IS PROVIDED ON THE DIN CONNECTOR POWER: 60W MAX CURRENT. 1.0 AMPS ELECTRICAL RATINGS 5A MAX. VOLTAGE (VAC/VDC): 240 4 AMPS, INDUCTIVE 125/250 V AC SETTING (%F.S.): 25 TO 100 7 AMPS, RESISTIVE 24 V DC (RESISTIVE) 2 AMPS, LAMP LOADED @ 28 V DC, 115 V AC 60 HZ AUTOMATIC RESETTING 28 V DC **DFN/DFH** G25E / G45E G25D / G45D 43650A PLUG & RECEPTACLE DIN 43650A PLUG & RECEPTACLE NO - RFD WITH CABLE CLAMP -COMMON - BLACK WITH CABLE CLAMP NC - GREEN SPDT SWITCH SPDT SWITCH 1 - NO OR NC (REVERSIBLE) 1 - COMMON 2 - NC OR NO (REVERSIBLE) 2 - NC 3 & 🕹 - NOT USED 3 - NO 3A 125 V AC MAX 3A 125 V AC MAX 1A 250 V AC / 200 V DC 3A 40 V DC MAX 3A 40 V DC MAX 70\// U.L. RECOGNIZED AUTOMATIC RESETTING

hyprofiltration.com/

Mounting Specifications

Assembly	Connection Option	Mounting Thread Type	Connection Flange Thread
PFH840	C32	1/2 – 13 UNC	3/4 - 10 UNC
PFHB	C24	M12 x 1.75	M16 x 2.0
DFH19	F16	M8 x 1.25	M8 x 1.25
DFH39	F24	M12 x 1.25	M12 x 1.25
DFN19	F16	M8 x 1.25	3/8 x 16 – UNC
DFN39	F24	M10 x 1.5	7/16 – 14UNC

Quality Statement & ISO Certification

Our Mission

At Donaldson Hy-Pro, our mission is to make our customers as efficient as possible. From improving the reliability of hydraulic and lube oil assets through our filter elements and filtration equipment to stopping equipment failures and downtime to reducing the environmental impact from the use and disposal of industrial fluids, it is our goal to eliminate industrial fluid contamination and all difficulties related to it.

Donaldson Hy-Pro strives to provide the highest quality filtration products and solutions, with a strong commitment to customer service, competitive pricing, and customer product support. The company continuously develops product and process improvements along with the introduction of new products.

Quality Policy Our policy is to provide the highest quality filtration products and service to both internal and external customers.

Our commitment is to continually improve products and processes, increase the capabilities of all employees and enhance the relationships with suppliers and customers.

ISO Certification

hyprofiltration.com/

Donaldson Hy-Pro Interchange

The world's largest selection of critical filter elements.

With over 250,000 filter element crosses, Donaldson Hy-Pro's Interchange offers the most extensive and comprehensive selection of critical hydraulic and lube oil filter elements anywhere. And it's only growing larger. Each year, we catalog thousands of filter elements in our efforts to provide our customers with the best contamination solutions, service and support possible.

Lower ISO Codes: Lower Total Cost of Ownership Donaldson Hy-Pro filter elements deliver lower operating ISO Codes so you know your fluids are always clean, meaning lower total cost of ownership and reducing element consumption, downtime, repairs, and efficiency losses.

DFE Rated Filter Elements DFE is Donaldson Hy-Pro's proprietary testing process which extends ISO 16889 Multi Pass testing to include real world, dynamic conditions ensures that our filter elements excel in your most demanding hydraulic and lube applications.

Upgrade Your Filtration Keeping fluids clean results in big reliability gains and upgrading to Donaldson Hy-Pro filter elements is the first step to clean oil and improved efficiency.

Advanced Media Options DFE glass media maintaining efficiency to $\beta_{3_{11}} > 4000$, Dualglass + water removal media to remove free and emulsified water, stainless wire mesh for coarse filtration applications, and Dynafuzz stainless fiber media for EHC and aerospace applications.

Delivery in days, not weeks From a massive inventory of ready-toship filter elements to flexible manufacturing processes, Donaldson Hy-Pro is equipped for incredibly fast response time to ensure you get your filter elements and protect your uptime.

More than just filtration Purchasing Donaldson Hy-Pro filter elements means you not only get the best filters, you also get the unrivaled support, training, knowledge and expertise of the Donaldson Hy-Pro team working shoulder-to-shoulder with you to eliminate fluid contamination.

Want to find out more? Get in touch.

hyprofiltration.com info@hyprofiltration.com +1 317 849 3535

© 2024 Donaldson Hy-Pro Corporation. All rights reserved.

